
CS–1994–37

Factors Affecting False Sharing on
Page-Granularity Cache-Coherent
Shared-Memory Multiprocessors

Vivek Khera

Department of Computer Science

Duke University

Durham, North Carolina 27708–0129

December 1, 1994

Factors Affecting False Sharing on Page-Granularity
Cache-Coherent Shared-Memory Multiprocessors

by

Vivek Khera

Department of Computer Science
Duke University

Approved: December 1, 1994

Carla Schlatter Ellis, Supervisor
Kishor S. Trivedi

Henry S. Greenside
Gopalan Nadathur
Joseph W. Kitchen

This is a reformatted version of the dissertation submitted in partial fulfillment of
the requirements for the degree of Doctor of Philosophy in the Department of

Computer Science in the Graduate School of Duke University.

Copyright c© 1994 by Vivek Khera
All rights reserved

Abstract

Efficiently supporting a shared memory paradigm in a large-scale multiprocessor generally in-
volves some form of data caching. One of the drawbacks of caching shared data is the cost of
keeping the multiple copies coherent. One source of unnecessary coherency overhead is caused
by a problem known as false sharing. Unfortunately, the lack of a precise, universally accepted,
definition of false sharing hinders research to detect and eliminate the problem.

We articulate our intuitive notion of false sharing and address the problems encountered in
previous attempts at defining false sharing. We motivate the importance of a concrete measure
by demonstrating that false sharing related coherence overhead comprises a significant portion of
the coherence costs in real applications, especially when page-granularity coherence is required.
An architecture-independent measure of the false sharing exhibited in a reference trace for cache
lines of a specified size is proposed and evaluated experimentally.

The proposed measure attempts to summarize the false sharing impact by approximating
some factors and discarding others. The evaluation of this formulation reveals that such summary
statistics lose too much information to be of practical use in predicting performance. We use this
work to motivate experiments to determine the relative importance of the various workload and
architectural factors that affect coherence data traffic. The conclusion from these experiments is
that the precise memory reference interleaving order is the most significant factor affecting false
sharing coherence data traffic.

Our methodology is to use an execution-driven simulation of specific architectures and ap-
plications to generate memory reference traces. The traces are then analyzed off-line.

iii

iv ABSTRACT

Acknowledgements

There are many people who have made my pursuit of this degree possible. Some helped aca-
demically and others socially.

First, I’d like to thank my parents for giving me the opportunities while I was growing up
to explore my interests. Without their support and encouragement I would never even have
attempted this.

Among the many friends I’ve made during my years in Durham are some of the finest people
I know — they have helped make life enjoyable. Dave Kotz and Rick LaRowe as my academic
“brothers” have provided many ideas and much guidance in my work, as well as being good
friends. Thomas Alexander, Chris Connelly, and Apratim Purakayastha have been invaluable in
helping me work through some of the rough spots while conducting this research.

Friday afternoon happy hours with Rick and the other AHH-ers, Dov Bulka, Dave Reed,
Owen Astrachan, Jonathan Polito, Varsha Mainkar, and Jitendra Apte provided life with some
of its most interesting moments. I thank Deganit Armon, Eric Anderson, and Marge Dietz for
the long philosophical conversations about life, the universe, and everything. I also thank Eric
for making me camp out for basketball season tickets, especially since I got to see all those
awesome home games! Finally, for throwing interesting twists and turns into my life, I want to
thank Lars Nyland, Stacy Doyle, and Katya Prince. The Ultimate Frisbee gang at Forest Hills
Park have also helped me enjoy my last year in Durham much more.

A very special thank you goes to my second “mom”, Carla Schlatter Ellis, for supporting me
through the ups and downs of the entire process.

v

vi ACKNOWLEDGEMENTS

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Evidence of the importance of false sharing . 1
1.2 Background . 2

2 Proposed definition 5
2.1 Difficulty of defining false sharing . 5
2.2 Definitions for factors . 6
2.3 Measures for false sharing . 8
2.4 Summary . 10

3 Experimental Methodology 11
3.1 The simulator . 11

3.1.1 The machine we are modeling . 11
3.1.2 Architecture parameters . 12
3.1.3 Detailed operation of the simulator . 13

3.2 Calculating true costs . 14
3.2.1 Invalidate Coherency . 14
3.2.2 Update Coherency . 15

4 Workload description 17
4.1 Synthetic programs . 17

4.1.1 Varying only sharing participation . 17
4.1.2 Varying sharing participation and processor set size 19

4.2 Real applications . 19
4.2.1 Barnes-Hut . 19
4.2.2 Cholesky . 19
4.2.3 MP3D . 20
4.2.4 Water . 20

5 Analysis of synthetic workload program execution 21
5.1 Introduction . 21
5.2 Synchronized and multiple references . 23
5.3 Multiple references without synchronization . 27
5.4 Synchronized . 32
5.5 Normal execution . 34
5.6 Discussion . 34

vii

viii CONTENTS

6 Analysis of SPLASH program execution 37
6.1 Evaluation of G as predictor . 37

6.1.1 Barnes-Hut . 37
6.1.2 Cholesky . 39
6.1.3 MP3D . 43
6.1.4 Water . 47
6.1.5 Discussion . 50

6.2 Evaluation of G′ as predictor . 52
6.2.1 Barnes-Hut . 52
6.2.2 Cholesky . 52
6.2.3 MP3D . 52
6.2.4 Water . 55
6.2.5 Discussion . 55

6.3 Evaluation of G × M ods as predictor . 55
6.3.1 Barnes-Hut . 56
6.3.2 Choleksy . 56
6.3.3 MP3D . 62
6.3.4 Water . 65
6.3.5 Discussion . 65

6.4 Limiting evaluation to phases . 68
6.4.1 Barnes-Hut . 68
6.4.2 Cholesky . 72
6.4.3 MP3D . 79
6.4.4 Water . 82
6.4.5 Discussion . 89

6.5 Summary . 89

7 Evaluation of factors 91
7.1 Experiment design . 91

7.1.1 Background . 91
7.1.2 Details of the experiment . 92

7.2 Results . 93
7.2.1 Four processor evaluation . 93
7.2.2 Sixteen processor evaluation . 96

7.3 Discussion . 97

8 Conclusions and future research 101
8.1 Review . 101
8.2 Speculations on future work . 102

Biography 107

List of Figures

1.1 Coherence data bytes transferred (real applications) 3

3.1 Idealized NUMA shared memory architecture . 12

4.1 Memory reference code for synth-FS . 18

5.1 synth-FS-s-n10, 64-byte page, update coherency 22
5.2 synth-FS-s-n10, 64-byte page, invalidate coherency 22
5.3 synth-FS-s-n10, 8k-byte page, update coherency 23
5.4 synth-FS-s-n10, 8k-byte page, expiring update coherency (clipped) 24
5.5 synth-FS-s-n10, 8k-byte page, invalidate coherency 24
5.6 synth-FS+PSS-s-n10, 64-byte page, update coherency 25
5.7 synth-FS+PSS-s-n10, 64-byte page, invalidate coherency 26
5.8 synth-FS+PSS-s-n10, 8k-byte page, update coherency 26
5.9 synth-FS+PSS-s-n10, 8k-byte page, invalidate coherency 27
5.10 synth-FS-n10, 64-byte page, invalidate coherency 28
5.11 synth-FS-n10, 8k-byte page, invalidate coherency 28
5.12 synth-FS-n10, 64-byte page, update coherency . 29
5.13 synth-FS-n10, 8k-byte page, update coherency . 29
5.14 synth-FS+PSS-n10, 64-byte page, update coherency 30
5.15 synth-FS+PSS-n10, 8k-byte page, update coherency 30
5.16 synth-FS+PSS-n10, 64-byte page, invalidate coherency 31
5.17 synth-FS+PSS-n10, 8k-byte page, invalidate coherency 31
5.18 synth-FS-s, 64-byte page, invalidate coherency . 32
5.19 synth-FS-s, 8k-byte page, invalidate coherency 33
5.20 synth-FS+PSS-s, 64-byte page, invalidate coherency 33
5.21 synth-FS+PSS-s, 8k-byte page, invalidate coherency 34
5.22 synth-FS, 8k-byte page, invalidate coherency . 35
5.23 synth-FS, 64-byte page, invalidate coherency . 35

6.1 Barnes-Hut, 64-byte page, update coherency (G) 38
6.2 Barnes-Hut, 64-byte page, invalidate coherency (G) (clipped) 39
6.3 Barnes-Hut, 8k-byte page, update coherency (G) 40
6.4 Barnes-Hut, 8k-byte page, invalidate coherency (G) 40
6.5 Barnes-Hut, 64-byte page, expiring update coherency (G) (clipped) 41
6.6 Cholesky, 64-byte page, update coherency (G) . 42
6.7 Cholesky, 64-byte page, expiring update coherency (G) (clipped) 42
6.8 Cholesky, 64-byte page, invalidate coherency (G) (clipped) 43
6.9 Cholesky, 8k-byte page, update coherency (G) . 44
6.10 Cholesky, 8k-byte page, invalidate coherency (G) (clipped) 44
6.11 Mp3d, 64-byte page, update coherency (G) . 45

ix

x LIST OF FIGURES

6.12 Mp3d, 64-byte page, invalidate coherency (G) (clipped) 46
6.13 Mp3d, 64-byte page, expiring update coherency (G) (clipped) 46
6.14 Mp3d, 8k-byte page, update coherency (G) . 47
6.15 Mp3d, 8k-byte page, invalidate coherency (G) . 48
6.16 Water, 64-byte page, update coherency (G) . 49
6.17 Water, 64-byte page, expiring update coherency (G) 49
6.18 Water, 64-byte page, invalidate coherency (G) . 50
6.19 Water, 8k-byte page, update coherency (G) . 51
6.20 Water, 8k-byte page, invalidate coherency (G) . 51
6.21 Barnes-Hut, 8k-byte page, update coherency (G′) 52
6.22 Barnes-Hut, 8k-byte page, invalidate coherency (G′) 53
6.23 Cholesky, 8k-byte page, update coherency (G′) 53
6.24 Cholesky, 8k-byte page, invalidate coherency (G′) (clipped) 54
6.25 Mp3d, 64-byte page, update coherency (G′) . 54
6.26 Mp3d, 64-byte page, invalidate coherency (G′) (clipped) 55
6.27 Water, 64-byte page, update coherency (G′) . 56
6.28 Barnes-Hut, 64-byte page, invalidate coherency (G × M ods) 57
6.29 Barnes-Hut, 64-byte page, update coherency (G × M ods) 57
6.30 Barnes-Hut, 8k-byte page, invalidate coherency (G × M ods) 58
6.31 Barnes-Hut, 8k-byte page, update coherency (G × M ods) 58
6.32 Barnes-Hut, 8k-byte page, expiring update coherency (G × M ods) 59
6.33 Cholesky, 64-byte page, update coherency (G × M ods) 59
6.34 Cholesky, 64-byte page, invalidate coherency (G × M ods) 60
6.35 Cholesky, 8k-byte page, update coherency (G × M ods) 60
6.36 Cholesky, 8k-byte page, expiring update coherency (G × M ods) 61
6.37 Cholesky, 8k-byte page, invalidate coherency (G × M ods) 61
6.38 Mp3d, 64-byte page, update coherency (G × M ods) 62
6.39 Mp3d, 64-byte page, expiring update coherency (G × M ods) (clipped) 63
6.40 Mp3d, 64-byte page, invalidate coherency (G × M ods) (clipped) 63
6.41 Mp3d, 8k-byte page, update coherency (G × M ods) 64
6.42 Mp3d, 8k-byte page, expiring update coherency (G × M ods) 64
6.43 Mp3d, 8k-byte page, invalidate coherency (G × M ods) 65
6.44 Water, 64-byte page, update coherency (G × M ods) 66
6.45 Water, 64-byte page, invalidate coherency (G × M ods) 66
6.46 Water, 8k-byte page, update coherency (G × M ods) 67
6.47 Water, 8k-byte page, invalidate coherency (G × M ods) 67
6.48 Overlapping windows for working set calculations 68
6.49 Barnes-Hut working set size, 5ms window (U64) 69
6.50 Barnes-Hut working set size, 5ms window (I64) 69
6.51 Barnes-Hut working set size, 5ms window (I8k) 70
6.52 Barnes-Hut working set size, 5ms window (U8k) 70
6.53 Barnes-Hut, impact of G, 20ms window (U8k) . 71
6.54 Barnes-Hut, impact of G, 20ms window (I8k) . 72
6.55 Barnes-Hut, impact of G, 20ms window (I8k) (clipped) 73
6.56 Cholesky working set size, 5ms window (I64) . 73
6.57 Cholesky working set size, 5ms window (U64) . 74
6.58 Cholesky working set size, 5ms window (U8k) . 74
6.59 Cholesky working set size, 5ms window (I8k) . 75
6.60 Cholesky, impact of G, 100ms window (U64) . 75
6.61 Cholesky, impact of G, 100ms window (I64) (clipped) 76
6.62 Cholesky, impact of G, 100ms window (U8k) . 77
6.63 Cholesky, impact of G, 100ms window (I8k) . 77

LIST OF FIGURES xi

6.64 Cholesky, impact of G, 50ms window (U8k) . 78
6.65 Cholesky, impact of G, 50ms window (I8k) . 78
6.66 Mp3d working set size, 5ms window (U64) . 79
6.67 Mp3d working set size, 5ms window (I64) . 80
6.68 Mp3d working set size, 5ms window (U8k) . 80
6.69 Mp3d working set size, 5ms window (I8k) . 81
6.70 Mp3d, impact of G, 10ms window (U64) . 81
6.71 Mp3d, impact of G, 10ms window (I64) . 82
6.72 Mp3d, impact of G, 10ms window (U8k) . 83
6.73 Mp3d, impact of G, 40ms window (I8k) . 83
6.74 Mp3d, impact of G, 10ms window (I8k) . 84
6.75 Water working set size, 5ms window (U64) . 84
6.76 Water working set size, 5ms window (I64) . 85
6.77 Water working set size, 5ms window (I8k) . 85
6.78 Water working set size, 5ms window (U8k) . 86
6.79 Water, impact of G, 150ms window (U64) . 87
6.80 Water, impact of G, 150ms window (I64) . 87
6.81 Water, impact of G, 50ms window (U8k) . 88
6.82 Water, impact of G, 50ms window (I8k) . 88

7.1 Quantile-Quantile plot of residuals for four processor experiments 94
7.2 Residual vs. Predicted value for four processor experiments 95
7.3 Quantile-Quantile plot of residuals for sixteen processor experiments 98
7.4 Residual vs. Predicted value for sixteen processor experiments 98

xii LIST OF FIGURES

List of Tables

3.1 Comparison chart for invalidate coherency . 15

4.1 Reference pattern for synth-FS with four processors 18

6.1 Summary of simulation runs for Barnes-Hut . 38
6.2 Summary of simulation runs for Cholesky . 41
6.3 Summary of simulation runs for Mp3d . 45
6.4 Summary of simulation runs for Water . 48

7.1 Workload factors and the levels at which they are evaluated 91
7.2 Memory reference patterns for four processors. 92
7.3 Processor lists for reference pattern (2 2) . 92
7.4 List of all experiments for four processors . 93
7.5 Regression results for four processor experiments with all interactions. 96
7.6 List of all experiments for sixteen processors . 97
7.7 Regression results for sixteen processor experiments with all interactions 99

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

Efficiently supporting a shared memory paradigm in a large-scale multiprocessor generally in-
volves some form of data caching. Data caching is an important technique to help reduce the
effective memory reference latency and various forms of memory reference contention such as
bus traffic and memory module contention. One of the drawbacks of caching shared data is the
cost of keeping the multiple copies coherent.

One source of unnecessary coherency overhead is caused by a problem known as false sharing
in large granularity cache units (e.g., multi-word cache lines or pages). False sharing is a result
of co-location of unrelated data in the same line: The data may be used by different processors
such that the line is shared among them but the individual data elements contained in the line
are not each referenced by all these processors.

Informal definitions, such as this, attempt to capture intuitive notions of “bad” packaging of
data relative to multiprocessor access patterns. Descriptions have varied considerably. At one
extreme, informal false sharing definitions have included only de facto private data items residing
together within a cache line (sharable, but actually accessed by different single processors). On
the other hand, any access behavior falling short of a uniform, pure sharing pattern can be called
false sharing. Unfortunately, the lack of a precise, universally accepted, definition of false sharing
hinders research to detect and eliminate the problem.

In the next section, we describe previous attempts to characterize or solve the false sharing
problem. We motivate the importance of false sharing by demonstrating the impact on co-
herency costs for real applications. In Section 2.1, we review some of the subtle issues that have
made defining false sharing difficult and we articulate our intuition of false sharing. Section 2.3
formally defines our false sharing measures. In Chapter 3 we present our experimental method-
ology. In Chapter 4, we describe the sample programs we use in Chapter 5 and Chapter 6 to
experimentally evaluate how well the measures capture our intuition and predict false sharing
performance impacts. Finally, in Chapter 7 we determine the importance of the various workload
and architectural factors on the impact of false sharing.

1.1 Evidence of the importance of false sharing

A first-order approximation to the cost of false sharing in the performance of a system is the
amount of additional coherence traffic that it causes. Here we present results of a simple set
of simulation experiments designed to measure the amount of coherence traffic caused by false
sharing under typical cache coherence policies. These data serve to motivate our investigation of
false sharing behavior by illustrating the seriousness of the false sharing problem and identifying
some of the factors involved in finding a good definition.

The simulator used in our experiments is based on Tango [8] and is driven by the SPLASH

1

2 CHAPTER 1. INTRODUCTION

benchmarks [24]. We compare the performance of both update-based and invalidate-based co-
herence protocols to an optimal coherence mechanism. For these experiments we have written a
machine description that is a simplified, parameterized NUMA1 architecture in which the phys-
ical memories of each processor node act only as caches for the global virtual address space,
sometimes referred to as COMA (Cache Only Memory Architecture). Each referenced virtual
address is resident in the local memory cache of at least one processor node. To eliminate
cache replacement effects, our simulator assumes infinite caches.2 We simulate both 64-byte and
8192-byte cache line sizes. The 64-byte line size is reasonable in modern hardware-based caching
systems, and the 8192-byte size is representative of systems based upon page-granularity caching
(e.g., Galactica Net [27]).

Our primary metric is the number of data bytes transferred among the processors3 in order to
ensure cache coherence. For the invalidation-based coherence protocol, coherence traffic occurs
when a processor misses on a line that would have been in the cache if it were not invalidated
by a write to that line by some other processor. Our measurements do not include the traffic
required to transmit invalidate messages when a shared line is modified. Coherence traffic for
the update-based protocol consists of update messages sent to processors with copies of the line
being modified. We count each destination independently, so that a single four-byte write to
a shared location may result in the transfer of 4(n − 1) data bytes if there are n processors
sharing the updated line. Only data bytes are counted; all message overhead is ignored for both
coherence protocols.

The optimal coherence policy that we simulate is based upon the following simple observation:
When a value is written to a shared location, that value need only be propagated to processors
that will actually read that value. It is obviously necessary to transfer a value written by one
processor to any other that expects to read that value. Furthermore, it is easy to see that
the data bytes transferred by this policy are sufficient, since any value that is never read by a
processor cannot affect the outcome of that processor’s computation. Since this policy generates
both the sufficient and necessary coherence data traffic, it is optimal. A bit of reflection reveals
that our optimal coherence policy is essentially an overhead-free invalidation-based coherence
policy with single-word line size.

In Figure 1.1, we graph the results of our experiments. The data clearly show that the number
of data bytes transferred to maintain coherence is significantly fewer for the optimal policy than
for the four more realistic alternatives (note the logarithmic y-axis) in nearly all cases. Since the
additional coherence traffic incurred by the realistic alternatives can be attributed to false sharing
effects, these data clearly demonstrate the potential significance of false sharing, especially for
page-based granularity caching systems.

1.2 Background
False sharing has been recognized as a serious problem in several recent studies. Some of the
earliest uses of the term “false sharing” appear in discussion of memory management for NUMA
architectures where page granularity migration and replication are employed to take advantage
of the faster local memory access times [4, 2, 16]. False sharing has been blamed as a cause
of increased coherency overhead in multiprocessor hardware caches with increasing line sizes in
workload characterization studies of shared memory reference patterns [12, 11].

Techniques for ameliorating the false sharing problem have also been proposed in [7, 9, 1].
The solution provided by Munin [1, 6] addresses only the most conservative form of false sharing.
Other proposals [7, 9] deal with the granularity of coherency which addresses one contributing

1Non-Uniform Memory Access time.
2This is a common simplification in cache studies.
3Note that we use “processors” and “caches” interchangeably when writing about the transfer of coherence

data in a system.

1.2. BACKGROUND 3

ba
rn

es

ch
ol

es
ky

m
p3

d

w
at

er

100000

1E+06

1E+07

1E+08

1E+09

1E+10

D
at

a
by

te
s 8k Invalidate

8k Update
64 Invalidate
64 Update
Optimal

Figure 1.1: Coherence data bytes transferred (real applications)

factor without necessitating (or offering) a thorough understanding or definition.
Two recent papers explicitly deal with quantifying false sharing effects and assessing proposed

optimizations aimed at eliminating them [26, 10]. An important contribution of these papers is
that each offers a concrete measure of false sharing impact. In each case, this is the number of
false sharing cache misses. The measures subtly differ in how false sharing misses are identified
and distinguished from misses caused by true sharing. The implementations result in a different
way of counting the misses to be blamed on false sharing and a different categorization when
applied to the same reference pattern. In [26], the method involves running two trace-driven
simulations, one with single-word cache blocks and one with multi-word blocks. In an infinite
single-word cache (i.e., no replacement), all misses (other than cold misses) result from coherency
operations caused by true sharing. Cache misses that are present in the multi-word simulation
that have no corresponding miss in the single-word simulation are attributed to false sharing.
Some true sharing misses in the single-word simulation may also be eliminated in the multi-word
simulation by successful prefetching. This technique is not amenable to real-time detection by an
operating system. The mechanism for classifying misses as false sharing misses in [10] is based on
tracking the current state (shared vs. non-shared) of referenced words, as determined by recent
invalidation history, in a multi-word granularity trace-driven simulation. Both versions of this
measure have the drawback that they depend on a particular coherency scheme (i.e., invalidation
protocols) for the definition of false sharing. A definition that is less architecture dependent is
highly desirable.

The real focus of these papers is on eliminating false sharing effects. Torrellas et al., in
[26], discuss methods of reducing false sharing related cache misses. Their primary methods are
to rearrange data such that variables that exhibit false sharing are placed on different cache
blocks and to put variables protected by a lock on the same block as the lock. By applying

4 CHAPTER 1. INTRODUCTION

these optimizations to several applications, they were able to reduce the number of cache misses.
Eggers and Jeremiassen [10] also propose techniques to eliminate false sharing in caches. Their
transformations involve allocating data objects together that have similar sharing properties and
the use of indirection.

Another effort aimed at defining and measuring false sharing is described in [3]. Bolosky and
Scott consider a number of alternative formulations using the criteria that the definition should
capture intuition, be mathematically precise, and be practical to apply. None of the alternatives
is found to be satisfactory on all counts. However, this negative conclusion is in a sense inevitable
since the intuitive notion the authors are trying to capture is not clearly articulated and the level
of precision sought is unrealistic. Neither of the measures of false sharing used by Torrellas et al.
[26] or Eggers and Jeremiassen4 [10] were included in this study.

4Although other aspects of this work were cited.

Chapter 2

Proposed definition

Detecting false sharing automatically requires some sort of metric to be defined. The “I’ll know
it when I see it”1 detection method obviously cannot be automated. Our goals are (1) to detect
when such a problem exists, (2) to identify the specific root causes of the problem (e.g., the
data structures that don’t belong together in a page based on having radically different access
patterns or the processor(s) responsible for generating a different access pattern), and (3) to
propose solutions that address the inherent causes (e.g., repackaging data, migrating processes).
We address the first two of these issues in this thesis.

2.1 Difficulty of defining false sharing
The characteristics we desire in a definition (to be translated into a concrete measure) of false
sharing are that it should (1) capture intuition, (2) be as architecturally independent as possible
and yet at least loosely predict performance impacts for various architectures, and (3) have
practical application in solving the false sharing problem.

The primary difficulty with providing a precise, formal definition of false sharing that captures
intuition has been that the intuition has not proved easy to articulate. The only easily described
intuitive notion (de facto private data items co-located in a shared line) seems clearly too narrow,
although it is an interesting special case that yields to creative solutions (e.g., Munin’s merge
capability [6]) and is universally accepted as an example of false sharing. This case can be
illustrated by the following trace of references for a line consisting of four words accessed by
four processors. We denote the referenced word by an upper case letter, A–D, and the processor
making the reference by a numeric subscript, 0–3 (e.g., A0 represents processor 0’s reference to
word A):

A0, B1, C2, D3, B1, D3, C2, A0

Now consider the following trace which we claim also exhibits false sharing:

A0, A1, C2, C3, B0, B1, D3, D2

In this case, all words are shared, but only by different subsets of all the processors referencing
the line as a whole (processors 0 and 1 reference words A and B while processors 2 and 3 reference
C and D).

We need to be able to articulate the intuition that identifies such examples as forms of false
sharing in order to derive and interpret more formal definitions or measures. This appears to be
the missing step in all previous work. Consequently, we offer the following statement:

1To paraphrase Supreme Court Justice Potter Stewart (though not to equate obscenity with false sharing).

5

6 CHAPTER 2. PROPOSED DEFINITION

The essence of false sharing is that the contribution made by the sharing patterns
on individual words of a line toward the observed sharing pattern of the entire line
is strictly less than full participation. Alternatively, the sets of processors accessing
the individual words are proper subsets of the set of processors accessing the line and
the level of false sharing is determined by the difference.

This statement covers various scenarios that we believe are examples of false sharing. It also
translates into quantitative measures (in Section 2.3) that correspond to our intuitive feel for
“more” or “less” false sharing in such scenarios.

Our second goal is architectural independence. As demonstrated in the previous section,
using the difference between coherence costs of different architectures as the defining metric
of false sharing is problematic is several ways. In particular, invalidation-based protocols and
update-based protocols may yield very different results. One feature of such characterizations is a
sensitivity to the precise ordering of references in a trace. The relative ordering of references from
different processors is obviously a factor in quantifying false sharing impact, as illustrated by
the difference between the following two reference strings under an invalidation-based protocol:

A0, A1, A0, A1, A0, A1

and

A0, A0, A0, A1, A1, A1.

The second reference string above is considered to be sequentialized : All references from a single
processor occur prior to those of another processor. However, it is not clear that attending
to minute reorderings between two traces that could be produced by the same program in an
asynchronous parallel environment is desirable. We prefer a definition tied more to the program
and line size and less to a particular execution of that program. Our measures define a window of
observation in a trace and lose precise ordering information within that window. While choosing
the window size is acknowledged to be an issue, losing some ordering information may be viewed
as acceptable in that a particular trace is not attributed more precision than it is likely to deserve
in a parallel system. It can also be argued that such summary information may be more practical
for dynamic resource monitoring and management.

2.2 Definitions for factors

The following workload and architectural factors have been identified to affect the false sharing
performance of a shared memory parallel program. All definitions for values that change during
program execution implicitly cover only the interval of execution under study. The interval
may be the entire execution of an application or may be some subset thereof. Intervals may be
expressed either in units of time (such as microseconds) or in number of references (such as 5000
shared memory references).

Number of processors: The number of processors participating in the computation. One
processor/memory pair constitutes a single “node”.

Page size: The size, in bytes, of the virtual memory pages provided by the system under study.
For systems with a fixed page size, this is an architectural parameter.

Remote memory reference latency: The number of cycles required to reference a word on
another node. On some architectures, this is not constant. It is not defined for systems
which only do block copy operations.

2.2. DEFINITIONS FOR FACTORS 7

Page copy time: The number of cycles required to make a copy of a memory page on a node
from another node. This may be shorter than the time needed to copy each word, since it
can be achieved with a block-copy operation.

Coherency protocol: The two policies we consider for keeping data coherent across nodes are
invalidate and update. Invalidate coherency means that when one processor writes to a
shared page, all other copies on other nodes are marked as invalid. When a node containing
a page marked invalid needs to reference that page, it must fetch a new copy from a node
with a valid copy. In the update coherence policy, when a page is modified on a node,
all other nodes with a copy of the page get a message containing the new value for the
modified word. The specific implementation details of these policies are not relevant here,
since we are only concerned with the volume of data traffic not the time it takes to perform
the coherency operations.

Update issue time: The number of cycles required to send an updated value of a word from
one node to another.

Update expire policy: In the update coherency policy, all nodes with a copy of a given page
need to be updated when any of them modifies a word in the page. Without some mech-
anism for removing inactive copies, unnecessary updates result and space is wasted. The
expiration can be based on either time or reference counts. We choose the latter: It is de-
fined as a number indicating how many updates for a given page a node will accept before
it discards the page from its memory if there have been no intervening local references to
that page.

Processor set size: For any given word, the number of processors that read or write that word.
For any given page, the number of processors that read or write any word in that page.

Number of reads and writes: For any given word, the number of reads (or writes) made by
all processors to that word. For any given page, the number of reads (or writes) made by
all processors to any word in that page.

Memory reference interleaving order: For a given word, the relative order in which each
processor references that word in a global ordering.
If processor A references a word at absolute time tA, and processor B references the same
word at absolute time tB where tA ≤ tB, then the reference from processor A is before that
from B. We denote this by the ordered list (A,B). The memory reference interleaving
order is the ordered list resulting from the transitive closure of this relation for all references
to the word from all processors.
We can extend this to the page or whole address space by replacing “word” in the paragraph
above with “page” or “address space” respectively.
There are a few particular patterns of reference interleavings in which we are interested,
primarily dealing with locality of reference. We base our definitions on the classical unipro-
cessor definition of locality from [13, Chap. 8].

Temporal run: If a word is referenced, it will tend to be referenced again soon by the same
processor, without intervening references by another processor. The length of the run
is the number of consecutive references by the processor.

With this definition, we attempt to capture the notion of a processor making exclusive use
of a word for a period of time (locality in time). Thus, the memory reference interleaving
order for a word would contain sequences of the form (. . . , B, A, A, · · · , A, A, C, . . .), i.e.,
containing a long sequence of references from only one processor. The following definitions
deal with locality in space (memory locations).

8 CHAPTER 2. PROPOSED DEFINITION

Cycles: The word is actively shared. The memory reference interleaving contains repeated
references from a particular processor with references from other processors inter-
mixed. The length of a cycle is the number of intervening references. For example,
the trace excerpt (. . . , A, x, x, A, x, x, A, x, x, A, . . .) contains a cycle from processor A
of length two (x indicates any processor other than A).

Thrashing: Extreme manifestation of cycles. The word is shared between a subset of the
processors, and the reference interleaving order contains interwoven cycles from these
processors, resulting in cycles from each of these processors with an average length one
less than the number of processors in the subset. For example, if the three processors
A, B, and C are thrashing a word or page, the trace would contain segments of the
form (. . . , B, A, C, B, C, A, · · · , B, A, C, . . .), where the average length of the cycles is
two. During the period of thrashing, no other processor references that word.

Unstructured: Memory reference orderings that do not have one of the above structures.

Working set: Traditionally, it is the set of pages in a process’s virtual address space to which
memory references have been made over some period of time [18]. We extend this definition
to be the set of pages to which memory references have been made from any processor,
and restrict the references counted to the shared data pages. Suggested periods of time
are the last 10,000 instructions or 10ms [19].

Phase change: The reference patterns dramatically change between “phases” of execution,
such as between initialization and computation phases of a numerical computation. For-
mally, it is when the rate of change in the working set for a given processor is higher than
the local average rate of change. This may be exhibited as a sudden burst in the size of
the working set.

Sharing participation: The degree to which the set of processors referencing a particular word
in a page is different from the set of processors referencing any word in that page. This is
quantitatively defined by the F metric in Equation 2.4. The G metric from Equation 2.6
quantifies the participation for the entire page.

The definitions presented for working set and phase change are provided only to be able to
define analysis interval boundaries. The significance of each of these factors in false sharing
impact is the subject of Chapter 7. Since our cost metric is based on data bytes transferred over
the interconnection network, we keep the timing-based factors fixed throughout our experiments.

2.3 Measures for false sharing
The coherence traffic cost measure of the previous chapter quantifies the impact of false sharing,
but only indirectly suggests the degree of false sharing caused by the particular composition and
sharing patterns applied to the page or line. In this section, we define more direct measures for
false sharing that capture the intuition expressed in Section 2.1. These are based on shared-
memory reference traces but are independent of any coherence mechanism.

Initially, each referenced word is assigned a false sharing value. These values are then com-
bined to calculate a measure for each line. This measure is useful in helping to isolate where
false sharing is taking place.

We define our false sharing measure based on a basic unit of memory reference, which we
will call a word (w). The size of a word is not defined here, and in fact may not be of fixed size.
Typically, references come in two sizes of a single word (4 bytes) and a double word (8 bytes).
We use the term word to refer to all atomic memory references, regardless of their actual size.
Words that are not referenced are treated as if they do not exist, since unreferenced words have
no direct effect on memory coherence costs.

2.3. MEASURES FOR FALSE SHARING 9

The unit of memory coherence is a line (l) which is a set of words:

lj = {wi|word i is part of line j} (2.1)
lj ∩ lk = ∅ , j '= k

In our discussion, we also refer to lines as pages, since page-granularity coherence motivated this
work.

The number of references made to word wi is denoted wi,r and the number of write-references
(modifications) is denoted wi,m. Similarly, we denote the total number of references to line lj as
lj,r and the number of write-references to the line as lj,m. All of these counts are taken over the
interval of time that is under study (this may be the entire duration of execution.)

The processor set of a word is the set of processors that reference the word over the time
interval of interest:

Wi = {processors referencing wi} (2.2)
The processor set of a line is the union of the processor sets of the words in the line:

Lj =
⋃

wi∈lj

Wi (2.3)

= {processors referencing lj}

Using these definitions, we can derive an expression for the false sharing that can be attributed
to a particular wi in lj :

F(i, j) = 1 − |Wi|
|Lj |

(2.4)

The key idea being that the greater the difference between the word’s processor set size and the
line’s processor set size, the greater the degree of false sharing associated with that word. If a
word has not been referenced, we do not use it in any further calculations.

For most cache coherence schemes, the primary cause of coherence overhead is due to write
references. With an invalidation-based protocol, writes cause the invalidations that in turn can
cause false sharing misses, and in an update-based protocol, it is the write references that cause
false sharing updates. Thus, it is often useful to weight F(i, j) by the fraction of references to
wi that are writes:

F ′(i, j) = F(i, j) × wi,m

wi,r
(2.5)

so that words used in a mostly read-only fashion will have F ′(i, j) close to zero, while words
with high write-to-reference ratios will have F ′(i, j) values closer to F(i, j).

The definition for false sharing associated with a given line is:

G(j) =
∑

wi∈lj

F(i, j) × wi,r

lj,r
(2.6)

which is just the weighted average of the false sharing measures of the individual words in the
line. To see the importance of the weighting, consider a line with n words, one of which has
a very high F(i, j) value and the rest with no false sharing (i.e., F(i, j) = 0). Clearly, if there
are very few references made to the one falsely-shared word, we would not consider the line to
be heavily falsely-shared. On the other hand, if the majority of references to the line were to
that one word, we would definitely consider the line to be falsely-shared. The weighting makes
it possible to distinguish these situations from one another.

As in the per-word case, we also define a write-weighted version of this measure:

G′(j) =
∑

wi∈lj

F ′(i, j) × wi,r

lj,r
(2.7)

=
∑

wi∈lj

F(i, j) × wi,m

lj,r

10 CHAPTER 2. PROPOSED DEFINITION

The weighting adjusts for the different contributions of each word to the overall false sharing
associated with the line.

2.4 Summary
In this chapter we reviewed the intrinsic and previously encountered difficulties in previous
attempts to define false sharing. We then presented our intuitive notion of false sharing and the
characteristics that a good definition for false sharing must have. In preparation for defining our
measure of false sharing, we defined the workload and architectural parameters that affect false
sharing. Finally, we developed in detail the measures we propose as candidates to be evaluated
for their usefulness in defining and predicting false sharing.

Chapter 3

Experimental Methodology

To evaluate the proposed measures, we need a testbed in which we can easily modify architectural
parameters and collect memory reference traces. We need traces in order to accurately measure
the actual false sharing, true sharing, and prefetching that occurs. Using a multiprocessor
execution-driven simulator allows us these capabilities.

The simulation environment we use is Tango [8] with our own machine model description.
Tango allows us to run each program multiple times with the same input and generate trace files
which are based on the specific architectural parameters under study. Trace driven simulation
would not suffice, as evidenced by the radical difference in execution times and number of memory
references in the Barnes-Hut program from the SPLASH benchmark suite (see Section 6.1.1).
In this program, a change in the type of memory coherence from update to invalidate caused
the run time of the program to increase by more than three times. The potential inaccuracy of
trace-driven simulations is one of the reasons for which Tango was originally written. Holliday
and Ellis [14] discuss the accuracy of such studies.

3.1 The simulator

Tango simulations are built such that a single executable contains both the simulation environ-
ment and the application program. When the program is run, the simulator reads the necessary
parameters from a configuration file, allocates the system resources it will need, and finally
creates the parallel environment. It then transfers control to the main routine of the application.

Programs are written using the Argonne PARMACS macros [5]. At compile time, the ap-
propriate hooks into the Tango libraries are inserted into the application object code. As much
of the code as can be is directly executed by the host CPU. For code that makes shared-memory
references, the Tango simulator code calls a routine in our NUMA simulator to determine how
long the reference will take. At this time, the status of the referenced page is updated.

3.1.1 The machine we are modeling

The machine we model consists of multiple processor-memory pair nodes connected by an ar-
bitrary network (Figure 3.1). The network is used to implement the coherent shared memory
abstraction for running MIMD (multiple instruction, multiple data) programs. A MIMD pro-
gram runs on multiple processors, with each processor progressing independently of the others,
except at explicit synchronization points. Remote memory references are more expensive than
local ones (NUMA) and each node’s memory serves as a cache for the global virtual address
space — there is no centralized global memory. Every reference must go to physical memory
since there are no instruction or data caches. Each node is assumed to have enough physical

11

12 CHAPTER 3. EXPERIMENTAL METHODOLOGY

Processor

Memory

Processor

Memory

Processor

MemoryProcessor

Memory

Processor

Memory

Processor

Memory

Interconnection Network

Figure 3.1: Idealized NUMA shared memory architecture

memory to hold all the virtual memory pages it will need so we don’t have to worry about
page-replacement policies.1 For these studies, all remote references are handled by replicating
the referenced page onto the local memory.

3.1.2 Architecture parameters

There are six options that modify the architecture of the machine being simulated. These
parameters allow for a very large number of qualitatively different architectures to be evaluated.
The options controlling the parameters are read from a configuration file by the simulator at
start-up, along with the other standard Tango parameters that set the time needed to execute
each instruction and reference local memory.

The simulator can run either an invalidate-based or an update-based memory coherency
policy. Invalidate coherency means that when one processor writes to a shared page, all other
copies on other nodes are marked as invalid. When a node containing a page marked invalid
needs to reference that page, it must fetch a new copy from a node with a valid copy. In the
update coherence policy, when a page is modified on a node, all other nodes with a copy of the
page get a message containing the new value. This keeps all copies of the pages in the system
identical. The coherency policy is selected by the CacheType parameter.

In either update or invalidate coherency, we use a sequential consistency model. Sequential
consistency implies that any changes to global memory are visible to all processors simultaneously
and before any future references are made. This affects our studies in that every coherency
operation causes traffic. In other consistency models, the coherency operations can be delayed
and batched together to reduce overheads when it is known that a particular word will not be
used by the target node during the delay. Other memory consistency models are discussed in

1A common simplification in cache studies.

3.1. THE SIMULATOR 13

[20].
For the update memory coherency policy, another parameter limits the number of “useless”

updates sent to a node. If a page on a node has not been used locally for a while, it is expired
(marked as invalid) so future modifications to that page on other nodes will not send additional
updates to the node. This reduces network traffic for pages which are no longer used by a given
node. The threshold used to determine when to expire a page in this situation is determined by
the following formula [17]:

C × Tu = Tp (3.1)

The value C is the count of the number of updates sent to the node for the page in question,
Tu is the time required to send an update for one word, and Tp is the time needed to copy
an entire page from another node. Since the latter two are fixed by the architecture, we can
easily compute C for our simulations. When a node has received C updates for a page without
referencing it locally, it will expire the page. The UpdThresh parameter determines the C value.
If this value is set to zero, the pages are never expired in this manner.

The size of the virtual memory pages can be set to any power of two from one word up to
8192 bytes (PageSize). The number of processors being simulated must also be set (NumNodes).
Only one thread runs per processor node.

As part of its operation, the memory system will need to copy an entire page from one node
to another. On a real machine, this can be done with a block copy if the hardware supports it,
or with a word-by-word copy loop implemented in software. Two parameters in the simulator
allow for maximum flexibility in deciding how block copies are done. The first parameter adjusts
the size of a block transfer (BlockSize). This can be anywhere from a single word up to PageSize,
but must divide PageSize evenly. The other parameter sets the time needed to transfer a single
block across the network (BlockCost). Setting these parameters to a single word sized block and
a transfer cost equal to that of a remote memory reference would simulate a machine with no
hardware block transfer capability.

In our experiments, BlockCost is set to 200.0 and BlockSize is set to 64 bytes, except in
the cases where the PageSize is four: BlockCost is set to 20.0 and BlockSize set to 4 bytes.
CacheType, PageSize, and NumNodes are varied for the different experiments. For the 64-byte
page size experiments, UpdThresh is computed as 10, and for the 8192-byte page size experiments,
it is computed as 1280.

3.1.3 Detailed operation of the simulator
Every reference to shared memory results in Tango calling a routine in our NUMA simulator to
compute the latency2 of the reference. In this procedure we track the status of each word and
page in the shared memory space for each node. Every page from the shared address space is in
one of three states on each node:

unaccessed The page has never been accessed by this processor.

valid There is a copy of this page in the local memory.

invalid The copy of the page on this node has been invalidated.

The initial access to a page by a processor brings the page from unaccessed state to valid state
and is counted as a cold miss. Data transfer costs associated with a cold miss are not used in
our analysis. A reference to a page which is marked invalid for the processor is counted as an
invalidate miss and brings the page to the valid state. If the reference is a write, then copies of
the page on all other processors are marked as invalid for the invalidate protocol (by sending a
message to each processor with a copy), or an update message containing the new value is sent
to each processor holding a copy of the page for the update protocol.

2time to complete

14 CHAPTER 3. EXPERIMENTAL METHODOLOGY

Messages are not really sent—just a count of how many and of which type is kept. There is
no overhead cost associated with these messages since we are interested primarily in the amount
of data traffic over the network. However, since we know the exact count of messages delivered,
we can add in this overhead at a later time during analysis.

The memory system simulated always does a page replication for non-local memory refer-
ences. If a replication is necessary, the time taken to satisfy the read or write is equivalent to
the time it takes to transfer PageSize÷ BlockSize blocks at BlockCost time for each. We do not
model any contention for the transport network. If a reference is local because the page is in the
node’s local memory, the time taken is the same as any other local memory reference. In the
update coherency case, once a page is replicated on a node it is always sent updates regardless
of whether it will actually use the page again.

The output from the simulator is a trace of all references to the global memory space. The
code and private data segment references are ignored since they are assumed to be in a private
area of each node’s memory and cannot affect the cost of data communication. The trace format
consists of one machine-independent trace file per simulated processor, where each trace entry
consists of the following fields:

• address space (shared or private)

• processor node number

• type (read or write)

• length (number of bytes)

• time

• address

During analysis, the traces from each processor are merged and sorted by reference time. This
provides us with a trace of the global memory reference interleaving order.

3.2 Calculating true costs
The traces collected when running the simulations are used to calculate the actual false sharing
and true sharing costs as well as the amount of benefit due to prefetching on a per-page basis.
These calculations are done off-line since there is a considerable amount of state information
necessary, and in some cases we need to know what the future references are.

3.2.1 Invalidate Coherency

The technique used is similar to the one used in [25], but we calculate the bytes transferred due
to false sharing rather than just counting the false sharing misses. Two concurrent trace driven
simulations are run: one is identical to the simulation that generated the trace (multi-word line
size), and the other tracks the location and status of each shared word (single-word line size).
On each shared memory reference, both simulations are updated, and the result (hit or miss)
from each is compared.

In Table 3.1 are listed the four possibilities of the comparison. If the single-word simulation
resulted in a hit and the multi-word simulation indicated a miss for a reference, then we would
conclude that the miss was induced by false sharing, and thus add to the false sharing cost the
amount of data we needed to transfer across the network (the size of a page). The other cases
contribute nothing to the false sharing cost calculation. The simulator is capable of distinguishing
a cold and true sharing miss by setting an additional flag.

3.2. CALCULATING TRUE COSTS 15

single-word multi-word indication
HIT HIT normal — no data transfer
MISS HIT prefetch benefit
HIT MISS false sharing induced miss
MISS MISS cold or true sharing miss

Table 3.1: Comparison chart for invalidate coherency

3.2.2 Update Coherency
Costs for update coherency are calculated in a similar fashion. However, every write operation
has potential for causing data traffic. On a write reference, if an update is sent to a node where
the word was not or will not be used, the data transfer is charged as false sharing, otherwise
it is true sharing. To determine if the word will be used, we need to look ahead in the trace.
The page faults induced by pages that have been expired based on the setting of UpdThresh
are charged as false sharing. These page faults must be charged as false sharing because they
are caused by unused words — if the words were actively used, the page would not have been
expired.

16 CHAPTER 3. EXPERIMENTAL METHODOLOGY

Chapter 4

Workload description

So far we have defined many terms and proposed summary measures to predict false sharing.
We now describe the programs we use to evaluate the effectiveness of the proposed measures.

4.1 Synthetic programs
To evaluate the false sharing measures presented, a set of synthetic workload programs with
simple and clear characteristics was developed. We chose a synthetic workload to do the initial
studies because it is possible to create programs with well defined sharing patterns.

For each program, there are four variations (selected as run-time options):

normal No extra options are given to the program. Each word is referenced once, and there is
no synchronization among the processors.

synchronized The program is run with all processors synchronizing on a barrier prior to pro-
cessing each page.

multiple reference Each memory reference is executed a fixed number of times. In these
experiments, this number is ten.

combined Both synchronized and multiple reference.

Each program was run on sixteen processors under the simulator to collect shared-memory
reference traces. Only references to shared memory are captured, and only the references to the
data pages are considered in their analysis.

In the next two sections, we describe in detail the programs we created for these experiments.

4.1.1 Varying only sharing participation
The program synth-FS generates a set of pages which have varying amounts of sharing partici-
pation ranging from full in the last page, to none in the first page. All other factors remain the
same from page to page.

To understand how this program works, we present an example. For N = 4 processors, we
have five pages. The first page has each processor reference exactly one word (all but the first
four words remain unreferenced). The second page would have two processors reference one
word each, and two processors reference the third word. The whole pattern of the number of
processors referencing each word is shown in Table 4.1. Note that each row sums up to N = 4,
and all the possible ways of making this sum are listed. For N = 16, there are 231 pages. In
the multiple reference case, each word is referenced multiple times immediately, as each page is
completely processed prior to a processor going to the next page.

17

18 CHAPTER 4. WORKLOAD DESCRIPTION

page procs/word
1 1 1 1 1
2 1 1 2
3 1 3
4 2 2
5 4

Table 4.1: Reference pattern for synth-FS with four processors

static void
worker(void)
{

int i, j, n;

for (i = 0; i < numPages; ++i) {
int high proc = 0;
if (synchronized)

BARRIER(glob→BA, numProcs); /∗ synchronize at each page ∗/
for (j = 0; j < numProcs; ++j) {

high proc += sums16[i][j];
if (my id < high proc) {

for (n = 0; n < nrefs; ++n)
/∗ reference each word nrefs times from each processor ∗/

glob→page[i][j] ∗= numProcs; /∗ read/modify/write ∗/
break; /∗ go to next page. ∗/

}
} /∗ for j ∗/

} /∗ for i ∗/
} /∗ worker() ∗/

Figure 4.1: Memory reference code for synth-FS

4.2. REAL APPLICATIONS 19

The main code executing on each processor is listed in Figure 4.1. The array sums16 contains
the list of ways of summing to 16 (like the example above for 4 processors), and is pre-computed
for efficiency. The reference to glob→page[i] is a pointer to the start of data page i.

4.1.2 Varying sharing participation and processor set size
The program synth-FS+PSS allocates one page per processor. Each page is referenced by a
different number of processors in the most conservatively false-shared manner. Each word is
referenced by exactly one processor: page 0 is referenced only by processor 0, page 1 is referenced
by processors 0-1, each using every other word, page 2 is referenced by processors 0-2, each using
every third word, etc. For the multiple reference per word case, each processor loops multiple
times over all the words on a page it is to reference so each word is referenced once before the
first word in the page is referenced again.

4.2 Real applications
The applications we use to represent real workload are taken from the SPLASH [24] bench-
mark suite of shared-memory parallel applications. These programs were written and collected
specifically to aid computer designers in developing and evaluating new architectures.

These programs are by no means representative of all parallel programs, but they do provide
a variety of complete, actual programs with which to evaluate our proposed measures. The four
programs we evaluated perform scientific computations. All exhibit more read-sharing activity
than write-sharing. Because we are running these programs under a parallel simulator, we are
limited in the problem size we can solve with each. The data sets input into the programs are
not trivial, but they are not as large as a typical input might be on a real parallel computer.

In the next four sections, we summarize each program briefly, based on the description in
[23]. For complete details of the programs, see that paper.

4.2.1 Barnes-Hut
The Barnes-Hut program simulates the evolution of a system of bodies under the influence of
gravitational forces. Each body is a point mass and exerts forces on all other bodies in the
system. In each time step of the simulation, the net force on each body is computed and its
position and other attributes are updated. Since all bodies affect each other, computing the
O(n2) pairwise forces would be impractical for large problems. The Barnes-Hut algorithm uses
a hierarchical tree based method to reduce the complexity to O(n log n). The tree is deeper
for regions where the body density is higher, with each node deeper in the tree representing a
successively smaller region.

For each body, the tree is traversed once to compute the forces acting on it. If the body is
sufficiently far away from the center of mass for the given subtree, the region is approximated by
a single particle in the center of mass of that region. If it is not far enough away, the subtree is
traversed. The majority of the time is spent in computing the inter-particle forces in each time
step.

Data locality is provided by exploiting physical locality in the problem domain. By making
the partitions spatially contiguous and equally sized in all directions, the interprocessor commu-
nication is minimized, and data reuse maximized. Barriers are used to synchronize at phases of
the program where overlap must not occur.

4.2.2 Cholesky
This program performs a parallel Cholesky factorization of a sparse positive definite matrix; i.e.,
given a positive definite matrix A, compute a lower triangular matrix L such that A = LLT .

20 CHAPTER 4. WORKLOAD DESCRIPTION

Cholesky factorization involves three steps in general: ordering, symbolic factorization, and
numerical factorization. The first is not done in this program, and the second is done by one
processor. The only step performed in parallel is the last one, which is the most time consuming.

The tasks are scheduled from a task queue, and any free processor can pull off any task which
needs to be completed. The only synchronization in the program occurs when accessing the task
queue, which is controlled with a lock.

4.2.3 MP3D
MP3D solves a problem in rarefied fluid flow where the flow involves extremely low density. Under
such conditions, traditional models such as the Navier-Stokes equations, are unusable because of
assumptions that the medium is continuous. With the low density, the discrete particle nature
of the medium becomes significant. MP3D uses a Monte Carlo method which simulates the
trajectories of a collection of representative molecules, subject to collisions with boundaries of
the physical domain, objects under study, and other molecules. Once a steady state is reached,
statistical analysis of the trajectory data is used to produce an estimated flow field.

Each molecule is statically scheduled to one processor, which always computes its movement.
The partitioning is not related to the particles location in space, so communication is significant.
Barriers are used to synchronize the processors between the phases of the computations.

4.2.4 Water
Water is an N-body molecular dynamics application which evaluates forces and potentials in a
system of liquid water molecules. Each time step involves setting up and solving the Newtonian
equations of motion for water molecules in a cubical box with periodic boundary conditions.
The method used for solving these equations is Gear’s sixth-order predictor-corrector method.
The total potential computed is the sum of intra-molecular and intermolecular potentials. A
spherical cutoff radius of half the box length is used to reduce the total number of pairwise
interactions computed. The box length is large enough to hold all of the molecules, and is
computed by the program. The program uses static scheduling of processors to data since the
communications patterns are predictable. Barriers are used to synchronize the processes before
and after computing intermolecular interactions.

Chapter 5

Analysis of synthetic workload
program execution

5.1 Introduction

We present here the characterization in terms of the measures defined in Section 2.3 of the
traces collected from running the synthetic programs described in Section 4.1. Since we know
the characteristics of these programs, we can identify the origins of the characteristics we discover.
Six architectures are compared for each program. We select the page size from either 8192 or 64
bytes, and set the memory coherency policy to either update, update with expires, or invalidate.
The goal here is to predict false sharing impact on an execution of an application, defined as the
number of data bytes that are transmitted across the interconnecting network among processors
that can be attributed to false sharing (as per the method in Section 3.2). Specifically, we want
to know (1) Is a summary measure any good as a predictor of false sharing impact? (2) Do
our proposed measures, G and G′ from Section 2.3, predict false sharing impact for individual
pages?

The plots in the discussion below compare the false sharing impact with a proposed predictor
for the entire run of a program. The x-axis is the value of the proposed predictor measure and
the y-axis is the number of data bytes transferred due to false sharing. Each point denotes a
single data page in the application. For interpreting these plots, we consider a “good” plot to
have the following properties:

• An increase in x-coordinate implies an increase in y-coordinate as a general trend (mono-
tonically).

• For the point (x, y), given the horizontal interval (x− δ, x+ δ), for small δ, the range of the
impact is within (y − ε, y + ε), for small ε, over the horizontal interval. The term “small”
is defined relative to the page size.

Plots that exhibit these properties are said to have a good correlation between the two functions
compared and indicate that the proposed predictor is useful for its intended purpose.

We organize the analysis by the run-time variants of each synthetic program. We do not treat
G′ here as a separate case because the programs we are analyzing are all doing a read/modify/write
loop. The number of writes is the same as the number of reads, thus these plots are nearly iden-
tical to those comparing G in all cases.

21

22 CHAPTER 5. ANALYSIS OF SYNTHETIC WORKLOAD PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

8000

7000

6000

5000

4000

3000

2000

1000

0

Figure 5.1: synth-FS-s-n10, 64-byte page, update coherency

G

F
S

Im
pa

ct

10.80.60.40.20

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

Figure 5.2: synth-FS-s-n10, 64-byte page, invalidate coherency

5.2. SYNCHRONIZED AND MULTIPLE REFERENCES 23

G

F
S

Im
pa

ct

10.80.60.40.20

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

Figure 5.3: synth-FS-s-n10, 8k-byte page, update coherency

5.2 Synchronized and multiple references
Figure 5.1 contains the plot for the synth-FS program run with per-page synchronization (-s)
and ten references per word (-n10) on a 64 byte page size with update coherency architecture.
We can clearly see a good correlation between the G measure and the false sharing impact. The
scattering is due to the loss of ordering information in the G calculation. Some of the references
are being sequentialized1 at the outset of each step while the processors are taking cold misses
and the processor set to which updates are sent is still being established; thus there is not
always as much traffic as the value of G indicates one could expect to see. When we switch to
an invalidate coherency policy, as shown in Figure 5.2, the shape of the curve changes, and the
accuracy of the prediction is lessened. There is too much variation for a fixed G to consider this
to be a good correlation. However, the maximum impact for a given G does define a clear upper
bound to the impact.

In Figure 5.3 we see the plot of synth-FS for an architecture with update coherency and 8192-
byte (8k-byte) pages. The comparison is perfectly linear in this case. Compared with the 64-byte
update coherency case, the larger granularity pages make it more likely that the processor set
will be complete when each processor emerges from its initial cold miss of each iteration due
to the increase in time which it takes to satisfy the cold miss and the small data size of this
program. Ordering of reference is not as big an effect in the update case as in the invalidate
case because of the implementation of the sharing mechanism: once a page is considered shared
at a node, it will always get updates for that page. In an architecture that expires pages that
are no longer needed, the correlation is not quite so perfect. In Figure 5.4, we plot the results
of the update architecture with expiring pages. A page is expired on a node if it has received
five updates without an intervening local reference. Notice that the magnitude of the impact
is much lower, and that the relationship between impact and G is not as ideal. The one page
clipped is at G = 0.0, with an impact of 401408 bytes, which is exactly 49 × 8192. This page
receives many updates before being used again, and is expired too often in this case. Figure 5.5

1Recall the definition of this term from Section 2.1

24 CHAPTER 5. ANALYSIS OF SYNTHETIC WORKLOAD PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

300

250

200

150

100

50

0

Figure 5.4: synth-FS-s-n10, 8k-byte page, expiring update coherency (clipped)

G

F
S

Im
pa

ct

10.80.60.40.20

2.5×106

2.0×106

1.5×106

1.0×106

5.0×105

0.0

Figure 5.5: synth-FS-s-n10, 8k-byte page, invalidate coherency

5.2. SYNCHRONIZED AND MULTIPLE REFERENCES 25

G

F
S

Im
pa

ct

10.80.60.40.20

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

Figure 5.6: synth-FS+PSS-s-n10, 64-byte page, update coherency

contains the plot for invalidate coherency on an 8k-byte page. It is not substantially different
from the 64-byte page case of the same program, except in the magnitude of the cost incurred.

The next four figures present the same set of plots for the synth-FS+PSS program. We again
see in Figure 5.6 a very good predictive capability of G for the 64-byte page size update-coherency.
The first page (with the lowest G) is only used by one processor, the second page is used by two
processors, and so on, with no true sharing of the words on a page. The more processors that
use a page the more data is transferred, so it follows that the higher the value of G, the higher
the false sharing impact.

In the invalidate case, Figure 5.7, we see the trend is not monotonic, but in general, impact
increases as G does. The “blip” at G = 0.75 is caused by the alignment of pages within the data
array. Each row of the data array consists of 2048 4-byte words, aligned over exactly 128 pages.
The row that is referenced by three processors contains the pages with G = 0.75. Since each
processor references every third word in the row, and the row consists of 128 contiguous 64-byte
pages, each page is referenced by each processor a slightly different number of times. The change
per page induced by three processors is what causes the additional false sharing traffic observed.
For the other rows in which a similar phenomenon occurs (6, 9, 12, and 15 processors per row),
the additional traffic is not as significant.

When we increase the size of the page to 8k bytes, we see no difference from the 64-byte
page size in the update case shown in Figure 5.8. This is because the cost of sending updates is
unchanged by the page size, and the program allocates data aligned to 8k byte boundaries. All
references by the program are identical, with the only difference being the size of pages copied
when we use an invalidate protocol. As we can see in Figure 5.9, the costs due to false sharing in
the 8k-byte invalidate case are orders of magnitude higher than the other cases. The “flattening”
of the plot at high G values is because each page is referenced the same number of times, and thus
has a maximum amount of data traffic associated with it. These pages incurred that maximum
amount of impact.

The characteristics of the other run-time variations of these programs will be compared to
these results.

26 CHAPTER 5. ANALYSIS OF SYNTHETIC WORKLOAD PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

12000

10000

8000

6000

4000

2000

0

Figure 5.7: synth-FS+PSS-s-n10, 64-byte page, invalidate coherency

G

F
S

Im
pa

ct

10.80.60.40.20

1.4×106

1.2×106

1.0×106

8.0×105

6.0×105

4.0×105

2.0×105

0.0

Figure 5.8: synth-FS+PSS-s-n10, 8k-byte page, update coherency

5.3. MULTIPLE REFERENCES WITHOUT SYNCHRONIZATION 27

G

F
S

Im
pa

ct

10.80.60.40.20

3.5×108

3×108

2.5×108

2×108

1.5×108

1×108

5×107

0

Figure 5.9: synth-FS+PSS-s-n10, 8k-byte page, invalidate coherency

5.3 Multiple references without synchronization

When the synth-FS program is run without any synchronization, many of the references get
sequentialized. In the invalidate cases, interpreting G as a predictor of impact would predict
a high amount of traffic caused by false sharing when in fact there is very little. This is due
to the access order of the pages — once a node is done with a page, it will not use it again.
Figure 5.10 illustrates this effect. Our predictive ability is non-existent. Even when G is high,
the false sharing data traffic (impact) is not, except for five pages at the highest values of G.

With the 8k-byte page size, shown in Figure 5.11, there is almost no traffic caused by false
sharing for the majority of pages. Only a very few pages are invalidated even once, and a few
pages are invalidated many times. The few pages with high cost associated with them are a side
effect of the simulation. These pages are accessed simultaneously by multiple processors, so the
invalidated pages are re-fetched. The highest G measures are associated with the last few pages
accessed, and this is when the simulator manages to context switch rapidly enough, after most
of the processors are terminated.

The G measure appears to be biased in a pessimistic direction and gives a worst-case pre-
diction. Certain interleavings, like the sequentialization in this program, can result in better
performance than predicted. This interleaving effect may suggest limiting the size of the window
of observation when calculating the G measure for such programs. This type of analysis is done
for the SPLASH programs in Chapter 6.

The plots for the update cases (64 byte page in Figure 5.12 and 8k-byte page in Figure 5.13)
are identical, as expected, due to the design of the program. The data are aligned on 8k
boundaries, and the references all occur in the first 64 bytes of a page. Both show perfect
correlation of G and false sharing impact.

Looking at the synth-FS+PSS program for the same sets of parameters, we find that for the
update coherency architectures (64-byte page in Figure 5.14 and 8k-byte page in Figure 5.15)
the correlation is quite good. In the 64 byte page invalidate architecture, there is no data
communication due to false sharing (Figure 5.16). Similarly, in the 8k-byte page invalidate case

28 CHAPTER 5. ANALYSIS OF SYNTHETIC WORKLOAD PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

Figure 5.10: synth-FS-n10, 64-byte page, invalidate coherency

G

F
S

Im
pa

ct

10.80.60.40.20

2.5×106

2.0×106

1.5×106

1.0×106

5.0×105

0.0

Figure 5.11: synth-FS-n10, 8k-byte page, invalidate coherency

5.3. MULTIPLE REFERENCES WITHOUT SYNCHRONIZATION 29

G

F
S

Im
pa

ct

10.80.60.40.20

6000

5000

4000

3000

2000

1000

0

Figure 5.12: synth-FS-n10, 64-byte page, update coherency

G

F
S

Im
pa

ct

10.80.60.40.20

6000

5000

4000

3000

2000

1000

0

Figure 5.13: synth-FS-n10, 8k-byte page, update coherency

30 CHAPTER 5. ANALYSIS OF SYNTHETIC WORKLOAD PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

Figure 5.14: synth-FS+PSS-n10, 64-byte page, update coherency

G

F
S

Im
pa

ct

10.80.60.40.20

700000

600000

500000

400000

300000

200000

100000

0

Figure 5.15: synth-FS+PSS-n10, 8k-byte page, update coherency

5.3. MULTIPLE REFERENCES WITHOUT SYNCHRONIZATION 31

G

F
S

Im
pa

ct

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

−1

Figure 5.16: synth-FS+PSS-n10, 64-byte page, invalidate coherency

G

F
S

Im
pa

ct

10.80.60.40.20

3×108

2.5×108

2×108

1.5×108

1×108

5×107

0

Figure 5.17: synth-FS+PSS-n10, 8k-byte page, invalidate coherency

32 CHAPTER 5. ANALYSIS OF SYNTHETIC WORKLOAD PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

700

600

500

400

300

200

100

0

Figure 5.18: synth-FS-s, 64-byte page, invalidate coherency

shown in Figure 5.17, there is no false sharing impact except for one page, which incurs all of the
costs. This is due to a simulation artifact as identified at the beginning of this section. There
is no false sharing impact in these two simulations because of the way the simulator executes
the code. Since different processors start out referencing different pages, by the time another
processor references a given page no other processor is concurrently referencing it. Invalidation
messages are sent, but the pages are never re-fetched (except for the one page in the invalidate
case).

5.4 Synchronized
Maintaining the synchronization but reducing the number of references has an effect on the
invalidate architectures, but little effect on the update ones. We present in Figure 5.18 the
64-byte page invalidate coherency case of synth-FS. The plot emphasizes one characteristic of all
of the invalidate case values: The false sharing transfer bytes is always a multiple of the page
size. We have a wider variation in G for a given amount of false sharing impact because of the
relatively few number of references. The predictive value of G is generally good, but there is
too much variation for G > 0.6, highlighting the lack of consistency in the trend. In Figure 5.19
(8k-page, invalidate coherency) we do not have a good predictor primarily because of a wide
variation in false sharing cost for the high G values. Most high-cost pages have high G, yet many
of the low-cost pages also have high G which would mean many false-positive predictions. In
both of these latter two cases, the maximum impact for G is monotonically increasing with G,
which is good.

As we’ve seen before, the update architecture cases of synth-FS+PSS remain similar to the
other run-time variations of it. There remains a high predictive capability for G. However, in the
invalidate architectures, problems develop. In Figure 5.20, the 64 byte page invalidate coherency
case is shown. There is absolutely no correlation between G and false sharing impact. Figure 5.21
contains a plot of the 8k byte page, invalidate coherency architecture case for this program. We
see some correlation here. In both of these last two cases, the reason for the observed effects is

5.4. SYNCHRONIZED 33

G

F
S

Im
pa

ct

10.80.60.40.20

100000

90000

80000

70000

60000

50000

40000

30000

20000

10000

0

Figure 5.19: synth-FS-s, 8k-byte page, invalidate coherency

G

F
S

Im
pa

ct

10.80.60.40.20

900

800

700

600

500

400

300

200

100

0

Figure 5.20: synth-FS+PSS-s, 64-byte page, invalidate coherency

34 CHAPTER 5. ANALYSIS OF SYNTHETIC WORKLOAD PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

1.8×107

1.6×107

1.4×107

1.2×107

1×107

8×106

6×106

4×106

2×106

0

Figure 5.21: synth-FS+PSS-s, 8k-byte page, invalidate coherency

due to the very low number of references made to each page by each processor. The pages are
not actively shared in that the pages are referenced sequentially by different processors.

5.5 Normal execution
When we remove synchronization from the above program executions of synth-FS, we have an
application that makes very few references to shared memory, and these references tend to become
sequentialized. The sequential nature of the references is a big hindrance to accurately predicting
false sharing costs based only on the amount of references. This is clearly demonstrated by the
plot in Figure 5.22. The 8k and 64 byte page invalidate coherency architecture cases look
virtually identical other than the scale of the vertical axis. In both of these cases, a page has at
most one page fault after being invalidated. This is partially due to the coarse granularity of the
simulation — the majority of the work from one processor can be done before any context switch
to simulate another processor starts. This results in very little data traffic due to invalidated
pages. It should be noted, however, that for the update cases in this program, we again have
good correlation, and the plots do not differ significantly from those of the other variations of
this program.

The analysis for the synth-FS+PSS program is identical to that of the multiple reference case
in Section 5.3. There is no major difference because of the order in which references are made.
Each processor references one page, then moves on to the next page. While it is referencing that
page, chances are that no other processor will reference it during that same time. This is partly
due to the granularity of the simulator.

5.6 Discussion
There were a few situations where G was very accurate in predicting the false sharing impact.
When a given page was accessed actively during the same period of time by many processors, the

5.6. DISCUSSION 35

G

F
S

Im
pa

ct

10.80.60.40.20

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

Figure 5.22: synth-FS, 8k-byte page, invalidate coherency

G

F
S

Im
pa

ct

10.80.60.40.20

70

60

50

40

30

20

10

0

Figure 5.23: synth-FS, 64-byte page, invalidate coherency

36 CHAPTER 5. ANALYSIS OF SYNTHETIC WORKLOAD PROGRAM EXECUTION

accuracy of G increased. This was demonstrated by the multiple-reference, synchronized versions
of the programs. When a page was accessed by processors at different time localities the accuracy
of G as a predictor was diminished, as demonstrated by the non-synchronized versions of the
programs.

In the following chapter, we analyze some real parallel programs in a similar fashion. We
defer final interpretation of the results of this chapter until the end of that chapter.

Chapter 6

Analysis of SPLASH program
execution

We now evaluate some real programs using the techniques developed in Chapter 5 for the syn-
thetic programs. These programs are from the SPLASH benchmark suite as described in Sec-
tion 4.2. As before, we evaluate the six variations of the architecture: 64-byte and 8k-byte page
sizes with either invalidate, update, or update with expire coherency. Where we do not specif-
ically address the expiring update coherency cases, there is no difference in the interpretations
derived from them and those derived from the standard update coherency cases.

In the previous chapter evaluating the synthetic programs, we saw only partial success with
using G as a predictor. It is becoming clear that G loses some information needed to predict
the false sharing impact of a program. In evaluating the SPLASH programs, we try additional
prediction measures which take into account more factors to answer the following questions: (1)
Does G′ provide a better predictor for false sharing impact? (2) Does scaling G by the number
of writes to each page improve the predictor? (3) Does computing G over shorter intervals as
defined by phase changes provide a good prediction? First we evaluate the programs using the
G metric. We will then proceed by answering the above questions in order, one per section. The
results we present are largely negative, and we investigate the causes of the failures.

6.1 Evaluation of G as predictor

6.1.1 Barnes-Hut

In Table 6.1 we present summary information about the simulation runs for the Barnes-Hut
program. The run time is in nanoseconds of simulated execution time. The number of read
and write references made by the executing program are important in interpreting the results
below. The column labeled Data Bytes indicates the number of data bytes transferred across
the interconnection network to keep the pages coherent (this includes both true sharing and
false sharing traffic). There is more data traffic in the 8192-byte update-expire than in the
non-expiring update version. For this particular application and input data, the update-expire
threshold was too low, resulting in pages being expired too soon. There were nearly as many
expire-induced page faults as there were expired pages. With the 64-byte page size, there is a
significant reduction in data transfer cost. Correspondingly, the number of expire-induced page
faults in this case is less than 70% of the number of expired pages.

It is interesting to note the large change in the runtime and number of reads for the 8k-byte
invalidate case as compared with the others. This large discrepancy demonstrates the qualitative
difference of the simulations when architectural parameters are changed. It is precisely for this

37

38 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

Memory Architecture Run time Reads Writes Data Bytes
Optimal 136747780ns 5099480 183128 528300
64-byte, Invalidate 138297560ns 5107078 183141 4384896
64-byte, Update 137370440ns 5098001 183128 7788550
64-byte, Update-expire 137684720ns 5108251 183130 4041284
8k-byte, Invalidate 515639340ns 8550031 183108 1618911232
8k-byte, Update 137901000ns 5110158 183128 14652222
8k-byte, Update-expire 138434560ns 5166504 183128 14842210

Table 6.1: Summary of simulation runs for Barnes-Hut

G

F
S

Im
pa

ct

10.80.60.40.20

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

Figure 6.1: Barnes-Hut, 64-byte page, update coherency (G)

reason that we do not use trace-driven simulations in our experiments. The execution-driven
experiments capture the difference in memory reference timing and orderings that the trace-
driven execution would not, making our results are more representative of reality. Holliday and
Ellis elaborate on this further in [14].

Running the analysis on the Barnes-Hut application, we see that for the 64-byte page ar-
chitectures we achieve no predictive ability. In Figure 6.1 (update coherency), the dispersion of
pages with high and low false sharing impact for the same value of G most likely indicates that
there is significant information loss which we cannot tolerate if we are to properly predict the
impact. Similarly, Figure 6.2 shows us that for the invalidate coherency, we suffer similar loss.
This plot in fact shows the inverse of what we had hoped for — the higher impacts are for pages
with the lower G values. Note that this plot is zoomed into the range where the detail can be
seen; the actual range of the impact on the vertical axis goes up to 700000 bytes transferred, but
only a few pages incurred that high cost. The high impact for pages with low G is the result of
sharing data on pages across separate phases of the program run. Different sections of each page
are shared by different subsets of processors at different times. We will see later how limiting
the computation of G to single phases of the execution improves the accuracy of the prediction

6.1. EVALUATION OF G AS PREDICTOR 39

G

F
S

Im
pa

ct

10.80.60.40.20

7000

6000

5000

4000

3000

2000

1000

0

Figure 6.2: Barnes-Hut, 64-byte page, invalidate coherency (G) (clipped)

in this type of situation.
When we increase the page size to 8k bytes, we see in both the update (Figure 6.3) and in-

validate (Figure 6.4) coherency models absolutely no correlation between G and the false sharing
impact. We conjecture that this is due to the loss in fine-grain information about the ordering
of the memory references.

The same program run with the expiring update coherency model shows a much wider dis-
persion of impact for values of G close to each other. The plot in Figure 6.5 shows this for the
64-byte page size. This plot is clipped to the same vertical scale as Figure 6.1 for comparison.
The few points that are clipped from this image are all near G = 0.0 and have a maximum value
of 132992 — the pages are shared at different times during the execution and repeatedly get
expired then later paged back in. Most of these pages contain lock data structures.

6.1.2 Cholesky

The next application we evaluate is Cholesky. The simulation run information is summarized
in Table 6.2. Like the Barnes-Hut program, the simulation of the 8k-byte page with invalidate
coherency runs much longer, and makes many more references to shared memory. The ratio of
reads to writes is lower than in Barnes-Hut (approximately 61

2 times more reads than writes)
except for the one case where it is over 20 times. The expiring update coherency provides a
significant reduction in data transfer over the regular update coherency. For both page sizes, the
number of expire-induced page faults is less than 45% of the number of pages expired.

Examining the plot of G compared to false sharing impact per page in Figure 6.6 we see
that for 64-byte page size with update coherency that most pages have a relatively low G value.
Further, the impact of the set of pages with the same G value varies widely from near zero to
several thousand bytes; there is no correlation between the two. Expiring pages with update
coherency results in reduced false sharing impact for the majority of the pages (Figure 6.7). The
majority of the higher impact pages have low G, and there is no increasing trend. This is caused
by these pages being expired often and paged back in because of a cyclical access pattern to

40 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

450000

400000

350000

300000

250000

200000

150000

100000

50000

0

Figure 6.3: Barnes-Hut, 8k-byte page, update coherency (G)

G

F
S

Im
pa

ct

10.80.60.40.20

1.8×108

1.6×108

1.4×108

1.2×108

1×108

8×107

6×107

4×107

2×107

0

Figure 6.4: Barnes-Hut, 8k-byte page, invalidate coherency (G)

6.1. EVALUATION OF G AS PREDICTOR 41

G

F
S

Im
pa

ct

10.80.60.40.20

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

Figure 6.5: Barnes-Hut, 64-byte page, expiring update coherency (G) (clipped)

Memory Architecture Run time Reads Writes Data Bytes
Optimal 316798140ns 12009536 1820214 2602588
64-byte, Invalidate 325613580ns 12103461 1820193 5880192
64-byte, Update 322095520ns 12050717 1820169 63434052
64-byte, Update-expire 322095520ns 12050717 1820169 14065668
8k-byte, Invalidate 904599740ns 38175037 1820103 1995030528
8k-byte, Update 324589740ns 12113467 1820190 116686416
8k-byte, Update-expire 324589740ns 12113467 1820190 47402188

Table 6.2: Summary of simulation runs for Cholesky

42 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

7000

6000

5000

4000

3000

2000

1000

0

Figure 6.6: Cholesky, 64-byte page, update coherency (G)

G

F
S

Im
pa

ct

10.80.60.40.20

7000

6000

5000

4000

3000

2000

1000

0

Figure 6.7: Cholesky, 64-byte page, expiring update coherency (G) (clipped)

6.1. EVALUATION OF G AS PREDICTOR 43

G

F
S

Im
pa

ct

10.80.60.40.20

1000

800

600

400

200

0

Figure 6.8: Cholesky, 64-byte page, invalidate coherency (G) (clipped)

the different data on them. For the invalidate case, we examine a clipped region of the plot in
Figure 6.8. The full vertical axis range goes up to 400000 bytes; all of the pages that are outside
of the presented plot are near G = 0.0. Again, there is no real correspondence between increasing
G and increasing impact.

With the 8k-byte page sized architectures, we again see little correlation. For the update
case, Figure 6.9, the majority of pages fall in the range 0.4 < G < 0.8, and the impact of those
pages varies widely. For the invalidate protocol, Figure 6.10, we present a clipped view again.
In this plot, any pages which were clipped out had G < 0.4. Once again, the value of G does not
help significantly in pinpointing pages that contribute the most to false sharing impact. There
are too many pages with high G with very low impact, which would mean many false-positive
predictions.

6.1.3 MP3D

The simulation information for Mp3d is summarized in Table 6.3. Like the previous two pro-
grams, the 8k-byte page with invalidate coherency architecture case runs much longer; unlike
the other programs, it does not make many more references to shared memory. The ratio of
reads to writes is nearly unitary for all architectures.

As in the Barnes-Hut application, the 8192-byte page expiring update coherency caused
more data traffic than the non-expiring version, but for the 64-byte page size, the data traffic is
reduced. In both cases, the number of expire-induced page faults is at least 96% of the number
of expired pages. The reduction in the 64-byte case results from the long duration between
expiring and re-loading the pages.

Shown in Figure 6.11 is the comparison of G to the false sharing impact (64-byte page, update
coherency). For low values of G there is a wide range in impact, but for higher values, the impact
remains quite low. The high impact for pages with low G is caused by sharing of the pages during
different phases in the execution, as we also observed in the Barnes-Hut application. A similar
situation occurs in the invalidate coherency architecture shown in Figure 6.12. This plot has four

44 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

1.2×106

1.0×106

8.0×105

6.0×105

4.0×105

2.0×105

0.0

Figure 6.9: Cholesky, 8k-byte page, update coherency (G)

G

F
S

Im
pa

ct

10.80.60.40.20

5.0×106

4.5×106

4.0×106

3.5×106

3.0×106

2.5×106

2.0×106

1.5×106

1.0×106

5.0×105

0.0

Figure 6.10: Cholesky, 8k-byte page, invalidate coherency (G) (clipped)

6.1. EVALUATION OF G AS PREDICTOR 45

Memory Architecture Run time Reads Writes Data Bytes
Optimal 52453561ns 3271963 3141549 6492356
64-byte, Invalidate 58269521ns 3272740 3142056 22362240
64-byte, Update 53383721ns 3270817 3140968 121814272
64-byte, Update-expire 53383721ns 3270817 3140968 30810496
8k-byte, Invalidate 2070405921ns 3273222 3142414 7710507008
8k-byte, Update 55295141ns 3274282 3142852 184052348
8k-byte, Update-expire 55295141ns 3274282 3142852 187392012

Table 6.3: Summary of simulation runs for Mp3d

G

F
S

Im
pa

ct

10.80.60.40.20

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

0

Figure 6.11: Mp3d, 64-byte page, update coherency (G)

46 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

30000

25000

20000

15000

10000

5000

0

Figure 6.12: Mp3d, 64-byte page, invalidate coherency (G) (clipped)

G

F
S

Im
pa

ct

10.80.60.40.20

60000

50000

40000

30000

20000

10000

0

Figure 6.13: Mp3d, 64-byte page, expiring update coherency (G) (clipped)

6.1. EVALUATION OF G AS PREDICTOR 47

G

F
S

Im
pa

ct

10.80.60.40.20

3.0×106

2.5×106

2.0×106

1.5×106

1.0×106

5.0×105

0.0

Figure 6.14: Mp3d, 8k-byte page, update coherency (G)

points clipped in order to show the detail of the majority of the pages. The clipped points range
in impact value from 30000 to 60000 and span the entire range of G. In the expiring update
coherency protocol case, there is a wide variation in impact for G < 0.2, and little impact for
G > 0.3. This is shown in Figure 6.13, which has four points clipped to show the detail. The
overall trend in this case is the opposite of what we expect from a predictor.

The value of G for the 8k-byte, update coherency architecture (Figure 6.14) provides a rea-
sonably good prediction of false sharing impact. Only a few pages with high G exhibit no false
sharing impact, and all of the pages with high impact have high G values. We have few false-
positive predictions. The invalidate coherency case lacks this predictive power, as shown in
Figure 6.15. There are many pages with high G but low impact, which means the prediction
results in many false-positive indications of high false sharing impact. The expiring update case
is similar to the update case, but shows a uniform increase in false sharing impact per page.

6.1.4 Water

The simulation information for water is summarized in Table 6.4. Like the previous programs,
the 8k-byte page size with invalidate coherency architecture simulation runs longer, but in this
case only by about fifteen percent. The number of reads and writes is identical for each execution,
and the ratio of reads to writes is approximately nine times more reads than writes.

Expiring pages in the update coherency for 64-byte page size greatly reduces the amount of
data transferred among the nodes, but for the 8k-byte page size, it results in a small penalty
(equivalent to fewer than eight page faults). In both cases, the number of pages that were expired
is just slightly more than the number of pages which were used after being expired.

In Figure 6.16 is a plot of the impact of each of the 2191 pages in the Water program for the
update coherency, 64-byte page size architecture simulation. The pages exhibit only 24 different
(G,Impact) tuples, as shown. The range for the impact is very wide for G values close to each
other. The highest impact measured in this application is at G = 0.019886. The expiring update
case is plotted in Figure 6.17. The scale of impact is much higher, due to the high number of

48 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

9×108

8×108

7×108

6×108

5×108

4×108

3×108

2×108

1×108

0

Figure 6.15: Mp3d, 8k-byte page, invalidate coherency (G)

Memory Architecture Run time Reads Writes Data Bytes
Optimal 998252601ns 7607660 819431 2389048
64-byte, Invalidate 999481201ns 7607660 819431 4251840
64-byte, Update 998553201ns 7607660 819431 29890416
64-byte, Update-expire 998553201ns 7607660 819431 8828792
8k-byte, Invalidate 1149306701ns 7607660 819431 671473664
8k-byte, Update 998906341ns 7607660 819431 38581528
8k-byte, Update-expire 998906341ns 7607660 819431 38646632

Table 6.4: Summary of simulation runs for Water

6.1. EVALUATION OF G AS PREDICTOR 49

G

F
S

Im
pa

ct

10.80.60.40.20

1600

1400

1200

1000

800

600

400

200

0

Figure 6.16: Water, 64-byte page, update coherency (G)

G

F
S

Im
pa

ct

10.80.60.40.20

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

Figure 6.17: Water, 64-byte page, expiring update coherency (G)

50 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

140

120

100

80

60

40

20

0

Figure 6.18: Water, 64-byte page, invalidate coherency (G)

expire-induced page faults. Even though we attribute more false sharing cost to each page, the
overall cost of all data traffic is reduced. For the invalidate case, shown in Figure 6.18, all but
one page exhibits no false sharing impact, and that page has G = 0.0. The impact of this page is
equal to only two page faults. This program has very little sharing since the data structures are
accessed by the same processor repeatedly. When there is sharing, it is mostly read-sharing, and
thus causes very little coherency traffic, especially when using the invalidate and update with
expire coherency policies. It is clear that G does not predict impact at all in these cases.

In the 8k-byte update coherency architecture, there is a clear increasing trend of the impact
as G increases, except for the one page with the highest G (which has zero impact). This is
shown in Figure 6.19. G seems to be a useful predictive tool in this case. The expiring update
case looks similar, but has a slightly higher impact scale. In the invalidate case, all but three
pages have very high impact and all have values of G close to each other. As seen in Figure 6.20,
the page with the highest G value exhibits no false sharing impact.

6.1.5 Discussion

The data from this section show that the proposed predictor, G, only works for a couple of
particular cases. The data access patterns for these cases are where the shared data is written
simultaneously by multiple processors with interspersed reads. This happens in the Mp3d and
Water programs. The effect is greatest in the 8k-byte page size with update coherency architec-
tures. The Mp3d program has low processor locality and a high degree of write-sharing. The
same data structures are written by the same processors at each time step in the computation,
but are referenced by all processors in each time step. In the Water program, the updates to the
data structures are all clustered by phases, so they happen pretty much concurrently. Even in
these cases, the range of G is very small, and the correlation somewhat disappointing.

6.1. EVALUATION OF G AS PREDICTOR 51

G

F
S

Im
pa

ct

10.80.60.40.20

700000

600000

500000

400000

300000

200000

100000

0

Figure 6.19: Water, 8k-byte page, update coherency (G)

G

F
S

Im
pa

ct

10.80.60.40.20

4×107

3.5×107

3×107

2.5×107

2×107

1.5×107

1×107

5×106

0

Figure 6.20: Water, 8k-byte page, invalidate coherency (G)

52 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G′

F
S

Im
pa

ct

10.80.60.40.20

450000

400000

350000

300000

250000

200000

150000

100000

50000

0

Figure 6.21: Barnes-Hut, 8k-byte page, update coherency (G′)

6.2 Evaluation of G′ as predictor

6.2.1 Barnes-Hut
Since Barnes-Hut is a real program, it will tend to make more read references than write ref-
erences. For this application, the number of reads is roughly 28 times that of the number of
writes. Because of this difference, we would expect the G′ measure (from Equation 2.7) to be
more accurate. However, as we see in Figure 6.21, this is not the case. Figure 6.22 also displays
this for invalidate coherency. The only difference between the comparison of G and G′ in these
cases is that the range of the metric compared is smaller for G′ than for G. This can be attributed
to the large difference in total number of references compared to the number of writes to each
page.

6.2.2 Cholesky
In comparing G′ to the false sharing impact for this program we do not get any better correlations
than for G. In Figure 6.23 is the 8k-byte update coherency case. It is similar to the G comparison
in Figure 6.9, but the range of G′ is reduced. Similarly for the invalidate case in Figure 6.24, we
see that G′ contains virtually no information about the actual impact on false sharing of those
pages. For the 64-byte page size architectures, we observe similar compression of the range in
the proposed predictor measure, G′.

6.2.3 MP3D
The number of writes is nearly equal to the number of reads in this program. Based on the
results of the previous programs, we would expect that the G′ measure would be about half of
G for each page. The plots in Figure 6.25 and Figure 6.26 confirm this. Comparing G′ does not
lead us to conclude that we can predict impact based on its value. Indeed, using it as a predictor
would result in a very high number of false-negative indications of high impact.

6.2. EVALUATION OF G′ AS PREDICTOR 53

G′

F
S

Im
pa

ct

10.80.60.40.20

1.8×108

1.6×108

1.4×108

1.2×108

1×108

8×107

6×107

4×107

2×107

0

Figure 6.22: Barnes-Hut, 8k-byte page, invalidate coherency (G′)

G′

F
S

Im
pa

ct

10.80.60.40.20

1.2×106

1.0×106

8.0×105

6.0×105

4.0×105

2.0×105

0.0

Figure 6.23: Cholesky, 8k-byte page, update coherency (G′)

54 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G′

F
S

Im
pa

ct

10.80.60.40.20

1×108

9×107

8×107

7×107

6×107

5×107

4×107

3×107

2×107

1×107

0

Figure 6.24: Cholesky, 8k-byte page, invalidate coherency (G′) (clipped)

G′

F
S

Im
pa

ct

10.80.60.40.20

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

0

Figure 6.25: Mp3d, 64-byte page, update coherency (G′)

6.3. EVALUATION OF G × MODS AS PREDICTOR 55

G′

F
S

Im
pa

ct

10.80.60.40.20

30000

25000

20000

15000

10000

5000

0

Figure 6.26: Mp3d, 64-byte page, invalidate coherency (G′) (clipped)

6.2.4 Water

The comparison of G′ to false sharing impact reveals very little new information over that of G.
Figure 6.27 contains the plot for the update coherency 64-byte page size architecture. All that
we observe is that the range of G′ is smaller than that of G and the points representing the pages
are condensed in the horizontal axis. There is no improvement of predictive power. The plots
for the other cases do not provide any additional insight, so are not presented here.

6.2.5 Discussion

Evaluating the programs in terms of G′ does little to improve the prediction over G. We had
expected a more accurate prediction because this measure is biased toward write references. It
turns out that the number of writes to shared data structures is low in these programs. While
writes to memory directly induce coherency traffic, read references are important in building
up the current set of active pages. The importance of writes designed into G′ appears to be
misguided in these cases.

6.3 Evaluation of G × M ods as predictor

It is clear that using G or G′ alone is ineffective at predicting the false sharing impact in a real
program. In an attempt at equalizing the importance of the predicting metric across pages, we
scale G by the number of writes to each page. This takes into account the relative importance
of a page in its direct contribution to false sharing impact. The intuition here is that coherency
operations are triggered by write references. We hope to re-organize the pages in the horizontal
direction such that a trend might appear. This is different than using G′ as the predictor; in this
case we are scaling by the absolute number of writes, rather than the ratio of writes to reads.

56 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G′

F
S

Im
pa

ct

10.80.60.40.20

1600

1400

1200

1000

800

600

400

200

0

Figure 6.27: Water, 64-byte page, update coherency (G′)

6.3.1 Barnes-Hut
In Figure 6.28 we see this plot for the 64-byte page invalidate coherency architecture. This plot
is clipped to show the detail of the plot; the full range goes up to 700000 bytes. There is no
correlation for this proposed metric. Figure 6.29 presents a similar plot for update coherency.
Higher values of the G × M ods metric do not imply higher false sharing impact. Therefore this
metric is of little use to the programmer to isolate the causes of false sharing related performance
problems.

We present the plots of G × M ods for 8k-byte pages in Figure 6.30 and Figure 6.31 for
completeness. The update-expire case (Figure 6.32) also has little correlation. Only the update
case shows the slightest hint of correlation of the predictor metric with the impact.

6.3.2 Choleksy
In the 64-byte page update coherency case, Figure 6.33, we see a trend of increasing cost with
increasing G × M ods, but closer inspection shows that there is too much variation for the lower
values of the predictor for it to be accurately used. The highest impact is measured for lower
values of the proposed predictor, a false-negative prediction. In the invalidate case (Figure 6.34),
we find no useful relationship between the predictor and the impact.

In a pleasing departure from the failures of many of the preceding tests to show any predictive
capability, the 8k-byte update case of this program shows a remarkable correlation between this
proposed predictor and the false sharing impact, presented in Figure 6.35. Only one or two pages
fail to conform to the linear relationship. However, for the case where the pages are expired, the
reduction in false sharing impact also totally destroys the linear relationship. This is shown in
Figure 6.36. The data structures are referenced by multiple processors until a certain condition
is met, after which the data structure is used by only one processor. In the normal update
case, updates are continually sent to all processors that ever referenced the page holding the
data structure, but in the invalidate and update with expire coherency mechanisms, these extra
data coherency operations are eliminated. The G measure expects constant data traffic, thus

6.3. EVALUATION OF G × MODS AS PREDICTOR 57

G × Mods

F
S

Im
pa

ct

6050403020100

7000

6000

5000

4000

3000

2000

1000

0

Figure 6.28: Barnes-Hut, 64-byte page, invalidate coherency (G × M ods)

G × Mods

F
S

Im
pa

ct

706050403020100

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

Figure 6.29: Barnes-Hut, 64-byte page, update coherency (G × M ods)

58 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G × Mods

F
S

Im
pa

ct

800070006000500040003000200010000

1.8×108

1.6×108

1.4×108

1.2×108

1×108

8×107

6×107

4×107

2×107

0

Figure 6.30: Barnes-Hut, 8k-byte page, invalidate coherency (G × M ods)

G × Mods

F
S

Im
pa

ct

450040003500300025002000150010005000

450000

400000

350000

300000

250000

200000

150000

100000

50000

0

Figure 6.31: Barnes-Hut, 8k-byte page, update coherency (G × M ods)

6.3. EVALUATION OF G × MODS AS PREDICTOR 59

G × Mods

F
S

Im
pa

ct

450040003500300025002000150010005000

600000

500000

400000

300000

200000

100000

0

Figure 6.32: Barnes-Hut, 8k-byte page, expiring update coherency (G × M ods)

G × Mods

F
S

Im
pa

ct

200180160140120100806040200

7000

6000

5000

4000

3000

2000

1000

0

Figure 6.33: Cholesky, 64-byte page, update coherency (G × M ods)

60 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G × Mods

F
S

Im
pa

ct

200180160140120100806040200

1000

900

800

700

600

500

400

300

200

100

0

Figure 6.34: Cholesky, 64-byte page, invalidate coherency (G × M ods)

G × Mods

F
S

Im
pa

ct

100009000800070006000500040003000200010000

1.2×106

1.0×106

8.0×105

6.0×105

4.0×105

2.0×105

0.0

Figure 6.35: Cholesky, 8k-byte page, update coherency (G × M ods)

6.3. EVALUATION OF G × MODS AS PREDICTOR 61

G × Mods

F
S

Im
pa

ct

100009000800070006000500040003000200010000

500000

450000

400000

350000

300000

250000

200000

150000

100000

50000

0

Figure 6.36: Cholesky, 8k-byte page, expiring update coherency (G × M ods)

G × Mods

F
S

Im
pa

ct

100009000800070006000500040003000200010000

5.0×106

4.5×106

4.0×106

3.5×106

3.0×106

2.5×106

2.0×106

1.5×106

1.0×106

5.0×105

0.0

Figure 6.37: Cholesky, 8k-byte page, invalidate coherency (G × M ods)

62 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G × Mods

F
S

Im
pa

ct

10009008007006005004003002001000

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

0

Figure 6.38: Mp3d, 64-byte page, update coherency (G × M ods)

these extra updates result in traffic that more closely match the assumptions. For the invalidate
coherency protocol, there is also no correlation as seen in Figure 6.37. The full range of this
clipped plot is up to 4 × 108 bytes, with only ten pages (points) being outside the shown range,
mostly in the central horizontal region.

6.3.3 MP3D

By scaling the G measure by the number of writes to each page, we see a nice trend of higher
impact for a higher measure in the 64-byte update architecture (Figure 6.38). There is still some
variation for each predicted value, but this must be expected given the summary nature of the
G metric. An imaginary line connecting the points along the top edge of the “cloud” of points
serves to show the upper bound of impact that the measure predicts. With expiring pages in the
update case, Figure 6.39, the trend changes from increasing to decreasing as the metric increases.
The change is similar to the change in the G vs. Impact plots. For the invalidate coherency case,
we see no useful correlation between the measure and the impact, as shown in Figure 6.40. The
highest measured impact values occur at the lower values of the proposed predictor. At the same
time, the lowest measured impact occurs in the same region.

For an architecture with 8k-byte page size and update coherency, we again observe a very
nice correlation between the metric and the impact. Figure 6.41 shows a nearly perfectly linear
relationship between the two. The linearity is still visible in the expiring update case (Figure 6.42)
but is not as perfect. This is because many unnecessary updates have been eliminated for some
pages. As before with the invalidate coherency case (Figure 6.43) we completely fail to be able
to predict.

The reason for these changes in predictive ability with coherency policy is similar to that for
the Cholesky program — the locality changes. The update coherency policy continues to send
updates where they are no longer needed, but the other policies do not. Since G expects this
traffic, it predicts the impact more accurately.

6.3. EVALUATION OF G × MODS AS PREDICTOR 63

G × Mods

F
S

Im
pa

ct

10009008007006005004003002001000

60000

50000

40000

30000

20000

10000

0

Figure 6.39: Mp3d, 64-byte page, expiring update coherency (G × M ods) (clipped)

G × Mods

F
S

Im
pa

ct

9008007006005004003002001000

30000

25000

20000

15000

10000

5000

0

Figure 6.40: Mp3d, 64-byte page, invalidate coherency (G × M ods) (clipped)

64 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G × Mods

F
S

Im
pa

ct

450004000035000300002500020000150001000050000

3.0×106

2.5×106

2.0×106

1.5×106

1.0×106

5.0×105

0.0

Figure 6.41: Mp3d, 8k-byte page, update coherency (G × M ods)

G × Mods

F
S

Im
pa

ct

450004000035000300002500020000150001000050000

3.0×106

2.5×106

2.0×106

1.5×106

1.0×106

5.0×105

0.0

Figure 6.42: Mp3d, 8k-byte page, expiring update coherency (G × M ods)

6.3. EVALUATION OF G × MODS AS PREDICTOR 65

G × Mods

F
S

Im
pa

ct

450004000035000300002500020000150001000050000

9×108

8×108

7×108

6×108

5×108

4×108

3×108

2×108

1×108

0

Figure 6.43: Mp3d, 8k-byte page, invalidate coherency (G × M ods)

6.3.4 Water

Even with the scaling of the number of modifications (writes) to each page, we are not able to
predict impact based on the measure. The 64-byte page size update coherency case shown in
Figure 6.44 has three regions of G × M ods. Each region has false sharing impact that varies
widely from low to high. The expiring update case has a similar distribution with a higher impact
scale. There is little correlation between the metric and the impact. The invalidate coherency
case (Figure 6.45) has all but one page with zero impact, so does not improve over the original
unscaled measure in Figure 6.18.

Both the update and invalidate coherency models for the 8k-byte page size architectures
provide reasonably good prediction between the G×M ods measure and the false sharing impact.
In the update case of Figure 6.46, the trend is nearly linear. The expiring update case (not shown)
has a similar plot, but with a lower impact scale. For the invalidate case, Figure 6.47, the high
measure values all have high impact, and low measures indicate low impact. However, there
is little distinction in impact among the higher predictor measure values. The accuracy of the
update case is due to the static nature of the pages being referenced. The same processors always
reference the same data structures, so relatively few pages get expired.

6.3.5 Discussion

The evaluations of the programs in terms of this metric were no more successful than those of the
previous section (G′). The only successful predictions were in the same cases and for the same
reasons as in that evaluation. This lends more support to our conjecture that the importance of
writes is not as significant as we originally thought when developing the measures.

66 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G × Mods

F
S

Im
pa

ct

454035302520151050

1600

1400

1200

1000

800

600

400

200

0

Figure 6.44: Water, 64-byte page, update coherency (G × M ods)

G × Mods

F
S

Im
pa

ct

454035302520151050

140

120

100

80

60

40

20

0

Figure 6.45: Water, 64-byte page, invalidate coherency (G × M ods)

6.3. EVALUATION OF G × MODS AS PREDICTOR 67

G × Mods

F
S

Im
pa

ct

100009000800070006000500040003000200010000

700000

600000

500000

400000

300000

200000

100000

0

Figure 6.46: Water, 8k-byte page, update coherency (G × M ods)

G × Mods

F
S

Im
pa

ct

100009000800070006000500040003000200010000

4×107

3.5×107

3×107

2.5×107

2×107

1.5×107

1×107

5×106

0

Figure 6.47: Water, 8k-byte page, invalidate coherency (G × M ods)

68 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

!

500µs
5ms window

Time

Figure 6.48: Overlapping windows for working set calculations

6.4 Limiting evaluation to phases
The observations of the synthetic programs indicate that the synchronized versions are more
predictable than the others. The synchronization points indicated times during the execution
that denoted a change in the area of shared memory which the program was accessing. The plot
of G vs. Impact in Figure 6.2 for the Barnes-Hut program also showed high impact for low G,
which we attributed to sharing of pages in separate phases. Within phases, the pages had more
false sharing than they appeared to have across phases. If we can determine the synchronization
points or phases of execution in these programs, we can expect to be able to do better prediction.
To this end, we use the size of the working set and its change to detect phase change boundaries.

The working set is computed over a sliding window of 5 milliseconds, and is reported every
500 microseconds (1

10 of the window size). That is, the working set is first reported after 5ms
of runtime of the program, and again every 500µs thereafter for the previous 5ms of runtime.
Figure 6.48 shows how the first four windows overlap as time progresses. The working set is
reported at the end of each of the intervals.

6.4.1 Barnes-Hut

Determining phase changes

The working set size history of Barnes-Hut is presented visually in Figure 6.49 for the 64-byte
update architecture. The dashed line indicates the size of the working set across time, and the
impulses indicate the relative change in the size of the working set from the previously reported
value. The same plot for invalidate coherency is in Figure 6.50.

From these plots, we see that there are definite phase changes as evidenced by the change
in working set. After the initial burst at the left edge, which represents all the pages referenced
since the beginning of the program, we see a large drop in the working set size. This is due to
the way the size is reported, and shows that the start of the program uses many pages and then
settles down to a relatively stable working set of approximately 1800 pages. Near time 5×107ns,
we see a burst of new pages added to the working set, and 5ms later a corresponding drop. The
duration between the rise and drop is exactly the length of our window. Thus, we can call this
a phase change as the set of pages in the working set has changed — the program has moved on
to another set of pages. We consider the phase change to take place at the point where the size
of the working set increases sharply (5ms before it declines sharply). After an interval of about
2 × 107ns, the cycle repeats, so we say that this program has a phase of that length.

Figure 6.51 contains a plot of the working set size from the 8k-byte page, invalidate coherency
run. We see similar patterns to the ones for the 64-byte page case, but with a lower number of
pages. The reduced page count is expected because the data size remains the same but the size

6.4. LIMITING EVALUATION TO PHASES 69

Size
Change

Time in nanoseconds

N
um

be
r

of
P
ag

es

1.4×1081.2×1081×1088×1076×1074×1072×1070

5000

4000

3000

2000

1000

0

−1000

−2000

−3000

−4000

Figure 6.49: Barnes-Hut working set size, 5ms window (U64)

Size
Change

Time in nanoseconds

N
um

be
r

of
P
ag

es

1.4×1081.2×1081×1088×1076×1074×1072×1070

5000

4000

3000

2000

1000

0

−1000

−2000

−3000

−4000

Figure 6.50: Barnes-Hut working set size, 5ms window (I64)

70 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

Size
Change

Time in nanoseconds

N
um

be
r

of
P
ag

es

6×1085×1084×1083×1082×1081×1080

40

30

20

10

0

−10

−20

−30

Figure 6.51: Barnes-Hut working set size, 5ms window (I8k)

Size
Change

Time in nanoseconds

N
um

be
r

of
P
ag

es

1.4×1081.2×1081×1088×1076×1074×1072×1070

40

30

20

10

0

−10

−20

−30

Figure 6.52: Barnes-Hut working set size, 5ms window (U8k)

6.4. LIMITING EVALUATION TO PHASES 71

G

F
S

Im
pa

ct

10.80.60.40.20

300000

250000

200000

150000

100000

50000

0

Figure 6.53: Barnes-Hut, impact of G, 20ms window (U8k)

of the pages is increased. The invalidate coherency execution ran much longer and generated
many more memory references than the other executions. There are many more pages which
are active during this execution. The low level of 22 pages is a common feature of both this
and the update coherency architecture, but the duration of the peaks is much longer, indicating
more activity for periods longer than the time window. We can consider this to be evidence of
some thrashing, and conclude that it is qualitatively different than the other runs of the same
program. For 8k-byte pages with update coherency, Figure 6.52, we see the same sharp changes
in working set size as we did with a 64-byte page size.

Changing the window size from 5ms to 10ms or 20ms results in similar looking plots, and
confirms our conclusion of where the phase changes occur. The expiring update coherency cases
are not substantially different in interpretation. These plots are not presented here.

Analysis of shorter time windows

Based on the evidence of phases in this application and previous experimental results, one would
expect that by limiting the computation of G to the duration of a phase, the predictive ability
would be improved. To test this hypothesis, we analyze the traces for the Barnes-Hut program in
windowed segments. We chose a window size of 20ms, which corresponds to the observed phase
length of the program. Unlike the windows used for the working set evaluation, these windows
do not overlap.

In Figure 6.53 we present a plot comparing G to the false sharing impact for each of the six
20ms windows in the program’s execution under update coherency. Notice that the range of the
impact (the vertical axis) is lower than that of the same plot when computed over the entire run
of the program (Figure 6.3). This is because the impact of a page is computed over a shorter
interval of time, and there are fewer total references made. The different symbols in the plot
indicate the different intervals from which each set of pages came. Each page appears as a point
for each interval in which it was referenced. There seems to be very little correlation between
G and the impact, as in the original comparison. Analysis of the expiring update coherency

72 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

4.5×107

4×107

3.5×107

3×107

2.5×107

2×107

1.5×107

1×107

5×106

0

Figure 6.54: Barnes-Hut, impact of G, 20ms window (I8k)

architectures shows no improvement in predictive ability, so is not presented here in detail.
The same plot for invalidate coherency is presented in Figure 6.54. There are many more

points in this plot because the run time was much longer, thus we had 26 intervals. For clarity, a
detail of the plot with the vertical axis range limited is shown in Figure 6.55. These plots show
a slight increase in impact as G gets higher, but there are many pages with very low G having
significant false sharing impact.

For the 64-byte page size cases, the plots are qualitatively the same as those for the entire
program execution (Figure 6.1 and Figure 6.2) so are not presented here. Increasing or decreasing
the window size in these analyses resulted in similar interpretations.

6.4.2 Cholesky
Determining phase changes

We plot the working set size and its change over the entire run of the program, computing the
size over a 5ms interval, reporting it every 500µs. The Cholesky program doesn’t show nice
distinct phases like the Barnes-Hut program did. In the 64-byte page size cases, the change in
working set size for both invalidate (Figure 6.56) and update (Figure 6.57) coherency follows the
same progression over time.

For the 8k-byte page cases, the update coherency (Figure 6.58) looks pretty much identical
to the 64-byte page cases. The invalidate case shown in Figure 6.59 has a much longer time
scale, but the initial portion corresponds quite closely with the other cases. Because the trace
runs much longer, the remainder of the working set plot is unique to this run.

Shorter time window analysis

Based on the working set size analysis above, we run the analysis comparing G to false sharing
impact on non-overlapping time windows of lengths 50ms and 100ms. These durations are
fixed-size intervals which divide the executions into major phases.

6.4. LIMITING EVALUATION TO PHASES 73

G

F
S

Im
pa

ct

10.80.60.40.20

1×107

8×106

6×106

4×106

2×106

0

Figure 6.55: Barnes-Hut, impact of G, 20ms window (I8k) (clipped)

Size
Change

Time in nanoseconds

N
um

be
r

of
P
ag

es

3.5×1083×1082.5×1082×1081.5×1081×1085×1070

10000

8000

6000

4000

2000

0

−2000

−4000

Figure 6.56: Cholesky working set size, 5ms window (I64)

74 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

Size
Change

Time in nanoseconds

N
um

be
r

of
P
ag

es

3.5×1083×1082.5×1082×1081.5×1081×1085×1070

10000

8000

6000

4000

2000

0

−2000

−4000

Figure 6.57: Cholesky working set size, 5ms window (U64)

Size
Change

Time in nanoseconds

N
um

be
r

of
P
ag

es

3.5×1083×1082.5×1082×1081.5×1081×1085×1070

140

120

100

80

60

40

20

0

−20

−40

Figure 6.58: Cholesky working set size, 5ms window (U8k)

6.4. LIMITING EVALUATION TO PHASES 75

Size
Change

Time in nanoseconds

N
um

be
r

of
P
ag

es

8×1086×1084×1082×108

120

100

80

60

40

20

0

−20

−40

Figure 6.59: Cholesky working set size, 5ms window (I8k)

G

F
S

Im
pa

ct

10.80.60.40.20

8000

7000

6000

5000

4000

3000

2000

1000

0

Figure 6.60: Cholesky, impact of G, 100ms window (U64)

76 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

30000

25000

20000

15000

10000

5000

0

Figure 6.61: Cholesky, impact of G, 100ms window (I64) (clipped)

In Figure 6.60 we present the analysis of G compared with false sharing impact for each page in
100ms intervals for the 64-byte page size update coherency policy. One fact not demonstrated by
the plot is that for the first and fourth (last) intervals, all pages had G = 0.0 and a corresponding
false sharing impact of 0 bytes, i.e., no false sharing. The initial and final intervals have no false
sharing because all the work is done by one processor — there is no data sharing whatsoever.
The two middle time windows are plotted in the figure. In the area where G < 0.5, the variation
in impact is very high. For the invalidate case shown in Figure 6.61, we present a clipped view of
the plot. The only point omitted from this figure is for G = 0.000007 and with the false sharing
impact of 370048 bytes. We see no useful correlation in this plot. The difference between this
plot and the entire execution analysis plot (Figure 6.8) is that much of the false sharing traffic
is eliminated because the pages are shared across phases, and we have limited our analysis to
single phases. Analysis of the expiring update coherency architectures shows no improvement in
predictive ability, so is not presented here.

The interpretation of the 8k-byte cases are virtually identical to the 64-byte cases. The
update architecture is shown in Figure 6.62 and the invalidate in Figure 6.63.

Reducing the size of the window in which we compute the measure to 50ms does not seem to
make any difference for the cases where we have a 64-byte page size. For the 8k-byte page size
cases, however there is a slight difference compared to the 100ms windows. Figure 6.64 contains
a plot of the update policy case with the 50ms window. It differs just slightly from the 100ms
window by being a little larger in the impact scale, and having more pages with zero bytes of
impact. For the invalidate case shown in Figure 6.65, we see that the pages with the highest
impact transfer an order of magnitude less data across processors. We see this as a more accurate
assessment of false sharing impact for the following reason: If the window size is too small, there
would be an increase in false sharing impact because data that is truly shared in the program
might not be used by all the processors during the interval, thus appearing to be falsely shared.
However, in this case we still observe many pages with zero impact at high G values.

6.4. LIMITING EVALUATION TO PHASES 77

G

F
S

Im
pa

ct

10.80.60.40.20

1.0×106

9.0×105

8.0×105

7.0×105

6.0×105

5.0×105

4.0×105

3.0×105

2.0×105

1.0×105

0.0

Figure 6.62: Cholesky, impact of G, 100ms window (U8k)

G

F
S

Im
pa

ct

10.80.60.40.20

1.4×108

1.2×108

1.0×108

8.0×107

6.0×107

4.0×107

2.0×107

0.0

Figure 6.63: Cholesky, impact of G, 100ms window (I8k)

78 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

1.2×106

1.0×106

8.0×105

6.0×105

4.0×105

2.0×105

0.0

Figure 6.64: Cholesky, impact of G, 50ms window (U8k)

G

F
S

Im
pa

ct

10.80.60.40.20

8.0×107

7.0×107

6.0×107

5.0×107

4.0×107

3.0×107

2.0×107

1.0×107

0.0

Figure 6.65: Cholesky, impact of G, 50ms window (I8k)

6.4. LIMITING EVALUATION TO PHASES 79

Size
Change

Time in nanoseconds

N
um

be
r

of
P
ag

es

5×1074×1073×1072×1071×107

15000

10000

5000

0

−5000

−10000

Figure 6.66: Mp3d working set size, 5ms window (U64)

6.4.3 MP3D

Determining phase changes

The working set size is computed for 5ms intervals and reported every 500µs as before. For the
architectures with 64-byte pages, we see three distinct phases. Figure 6.66 shows the update
coherency case, and in Figure 6.67 is the invalidate case. In both, the phases are marked at the
points where there is a sharp change in the working set size, aside from the initial spike caused
by the startup of the program.

For the 8k-byte page size architectures, the update case shown in Figure 6.68 exhibits a similar
pattern to the 64-byte cases, but has a less pronounced initial phase change. Also, during the
middle phase, the working set size changes slightly more than it did for the 64-byte cases. The
invalidate coherency case, however is substantially different. Shown in Figure 6.69, we see a
large change in the working set size approximately every 40ms. This program runs substantially
longer than the others, too, and the 40ms interval is nearly two-thirds of the runtime of each of
the other simulations.

Shorter time window analysis

Based on the above analysis of working set size changes, we compute the G metric over smaller
time windows appropriate for each architecture. For the 8k-byte invalidate case, we use a 40ms
window, as that is the average duration of the “bumps” in the plot of Figure 6.69. For the
other cases, we select a 10ms window which divides the execution at the two large changes in
the working set size.

Computing G over 10ms intervals during the program execution results in many pages having
very low false sharing impact. In addition, many pages with high impact have relatively low G
values. The situation is similar for both the 64-byte page update, Figure 6.70, and invalidate,
Figure 6.71. Compared with the entire run analysis, many pages with higher G have increased
impact. Again, we can attribute this to the sharing of these pages across phases. In the entire run

80 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

Size
Change

Time in nanoseconds

N
um

be
r

of
P
ag

es

6×1075×1074×1073×1072×1071×1070

15000

10000

5000

0

−5000

−10000

Figure 6.67: Mp3d working set size, 5ms window (I64)

Size
Change

Time in nanoseconds

N
um

be
r

of
P
ag

es

6×1075×1074×1073×1072×1071×1070

100

80

60

40

20

0

−20

−40

−60

Figure 6.68: Mp3d working set size, 5ms window (U8k)

6.4. LIMITING EVALUATION TO PHASES 81

Size
Change

Time in nanoseconds

N
um

be
r

of
P
ag

es

2×1091.5×1091×1095×1080

100

80

60

40

20

0

−20

−40

−60

Figure 6.69: Mp3d working set size, 5ms window (I8k)

G

F
S

Im
pa

ct

10.80.60.40.20

40000

35000

30000

25000

20000

15000

10000

5000

0

Figure 6.70: Mp3d, impact of G, 10ms window (U64)

82 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

16000

14000

12000

10000

8000

6000

4000

2000

0

Figure 6.71: Mp3d, impact of G, 10ms window (I64)

analysis, the pages are known to eventually be fully shared, so the G measure is low. However,
since the page is not fully shared at the time of the coherency operation, we must charge it to
false sharing.

The 10ms interval analysis of the 8k-byte update architecture trace shows similar results to
the 64-byte cases, as shown in Figure 6.72. There are a large number of pages with middle-range
G values with a wide range in impact. For the invalidate coherency version, we used a 40ms
window for reasons stated above. The plot in Figure 6.73 shows us that for most values of G we
cannot tell if there is very little impact or considerable impact. In particular, pages with a value
of G ≈ 0.9 exhibit anywhere from no false sharing impact to the highest impact for any page in
this application. Using G to isolate pages with high impact does not work in this case.

For completeness, the 8k-byte invalidate was also analyzed using a 10ms interval. The plot
of the pages and their impact is presented in Figure 6.74. There is little improvement in the
predictive capability, yet we have many more pages with higher G values that retain the same
impact values, confirming our choice of a longer interval for this architecture.

6.4.4 Water
Determining phase changes

As before, we compute the working set size every 500µs over the last 5ms of run time. For
the 64-byte page size architectures (update coherency in Figure 6.75, invalidate coherency in
Figure 6.76), there is a nearly constant number of active pages during the majority of execution
time. Other than the initial startup and the final data output, there are only slight variations in
the working set size at regular intervals. The very slight change occurs at a repeating interval
of 150ms, which we consider to be the length of each phase in this program. At the end of the
program execution, there are three spikes in the working set size. The width of these spikes is
5ms, an artifact of the resolution at which we compute the working set size.

The working set size on the 8k-byte page size architectures remains nearly constant at ten
pages. Every 50ms there is a change, and we use this value as the length of a phase. At the

6.4. LIMITING EVALUATION TO PHASES 83

G

F
S

Im
pa

ct

10.80.60.40.20

1×106

900000

800000

700000

600000

500000

400000

300000

200000

100000

0

Figure 6.72: Mp3d, impact of G, 10ms window (U8k)

G

F
S

Im
pa

ct

10.80.60.40.20

1.4×107

1.2×107

1×107

8×106

6×106

4×106

2×106

0

Figure 6.73: Mp3d, impact of G, 40ms window (I8k)

84 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

1×107

9×106

8×106

7×106

6×106

5×106

4×106

3×106

2×106

1×106

0

Figure 6.74: Mp3d, impact of G, 10ms window (I8k)

Size
Change

Time in nanoseconds

N
um

be
r

of
P
ag

es

1×1099×1088×1087×1086×1085×1084×1083×1082×1081×1080

5000

4000

3000

2000

1000

0

−1000

−2000

−3000

Figure 6.75: Water working set size, 5ms window (U64)

6.4. LIMITING EVALUATION TO PHASES 85

Size
Change

Time in nanoseconds

N
um

be
r

of
P
ag

es

1×1099×1088×1087×1086×1085×1084×1083×1082×1081×1080

5000

4000

3000

2000

1000

0

−1000

−2000

−3000

Figure 6.76: Water working set size, 5ms window (I64)

Size
Change

Time in nanoseconds

N
um

be
r

of
P
ag

es

1.2×1091×1098×1086×1084×1082×1080

35

30

25

20

15

10

5

0

−5

−10

−15

Figure 6.77: Water working set size, 5ms window (I8k)

86 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

Size
Change

Time in nanoseconds

N
um

be
r

of
P
ag

es

1×1099×1088×1087×1086×1085×1084×1083×1082×1081×1080

35

30

25

20

15

10

5

0

−5

−10

−15

Figure 6.78: Water working set size, 5ms window (U8k)

end of the run, the number of active pages doubles. The difference at the end of the program
between the invalidate (Figure 6.77) and update (Figure 6.78) is after the first major jump in
working set size at 846140740ns in both plots. Up to this time, both the invalidate and update
architectures proceed identically in terms of working set size. After this point, the invalidate
case takes longer to finish, indicating contention for memory and active write sharing during the
final output.

Shorter time window analysis

By dividing the execution of the program into time windows which correspond to the phases,
we should be able to detect pages which exhibit false sharing, but not necessarily over the entire
application. We use the lengths determined in the previous section for this analysis.

For the 64-byte page size architectures, we use a window of 150ms, which divides the run
time into seven windows. During the first five windows, every page has G = 0.0 and a false
sharing impact of zero. The impact and G value for each page is plotted for the update case in
Figure 6.79. Each window is plotted using a different symbol in the figure. The amount of false
sharing during each interval is quite low. There is no correlation between G and impact. For the
invalidate case, Figure 6.80, we get only one additional page with false sharing impact than we
did when analyzing the entire run of the program. This may indicate we have chosen an interval
that is too short or that there really is no false sharing. Since we know that this application has
very little false sharing, we conclude that the interval is not too short.

The natural maximum window size for the 8k-byte page size architectures for this application
is 50ms. For the update coherency case shown in Figure 6.81, the pages with the highest impact
have G values in the middle of the range. Some pages with low measured impact have higher
predicted impact than they did before. We are not better able to predict the impact than we
were when analyzing the entire run. With invalidate coherency, we have very similar results
(Figure 6.82). This is because of the private nature of the shared data references. Only at the
end of the program are some pages shared among the processors that access them.

6.4. LIMITING EVALUATION TO PHASES 87

G

F
S

Im
pa

ct

10.80.60.40.20

800

700

600

500

400

300

200

100

0

Figure 6.79: Water, impact of G, 150ms window (U64)

G

F
S

Im
pa

ct

10.80.60.40.20

70

60

50

40

30

20

10

0

Figure 6.80: Water, impact of G, 150ms window (I64)

88 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

G

F
S

Im
pa

ct

10.80.60.40.20

300000

250000

200000

150000

100000

50000

0

Figure 6.81: Water, impact of G, 50ms window (U8k)

G

F
S

Im
pa

ct

10.80.60.40.20

1.2×107

1×107

8×106

6×106

4×106

2×106

0

Figure 6.82: Water, impact of G, 50ms window (I8k)

6.5. SUMMARY 89

For all four of these cases, reducing the window size further does not substantially improve
the correlation between G and the impact. Only in the 64-byte update coherency case do we get
more pages exhibiting false sharing impact, with most of them having similar characteristics to
the ones from the longer window interval which was presented.

6.4.5 Discussion

Evaluated in isolation, the plots of this section do not provide much more insight than did those
of Section 6.1. However, when compared to those other plots, we see some of the effects of the
shorter time window. The main point to notice is that the points in the plots are shifted to
the right. This basically means that for the pages with higher impact, the G prediction is more
accurate. The root cause of the shift is that the inter-phase sharing of the pages was masking
the coherency operations charged to false sharing. With the shorter intervals, the references
are limited to periods where the processors sharing the pages are actively sharing them. This
is more in line with the assumptions in the design of G, and results in slightly more accurate
predictions.

6.5 Summary

Our original goal of using the G and G′ metrics to predict false sharing impact is what we had
hoped to prove useful. For certain programs with specific synchronization and reference patterns,
we were successful in making the predictions; for the general case, we were not. The main result
from these data is that the G metric alone is not generally useful for predicting the false sharing
impact a page will have. In addition, even scaling the importance of a page by the number of
modifications to it will not improve the predictive capability.

When a page was accessed by processors at different time localities the accuracy of G as a
predictor was diminished, as we discovered in the previous chapter with the synthetic programs.
This situation is what causes the appearance of many pages with zero false sharing impact but a
high G measure in the SPLASH programs. The data on the page is truly shared, but at different
times during the execution. This observation directed us to evaluate G for pages over a shorter
time window.

To determine the proper size of the time window to analyze, we identified phase changes in the
applications. Choosing arbitrary window lengths may have resulted in choosing windows which
were too short, in turn resulting in many pages being classified as exhibiting false sharing when
they should not. This would occur when the data on a page is required by several processors
for a computation that took longer than the selected window. Alternatively, the time window
could be chosen to be too long, possibly resulting in G indicating a reduced amount of false
sharing. By using phase changes as boundaries for the windows, we have substantially reduced
the possibility of these situations arising.

The sensitivity to window size is exemplified by the 8k-page size invalidate coherency archi-
tecture runs of Cholesky and Mp3d. In the Cholesky program, reducing the window size from
100ms to 50ms resulted in a decrease in the impact scale. The larger window size resulted in
many pages being measured with higher false sharing impact than they should have been. In
the Mp3d program, the smaller window size results in G having higher values, but the actual
impact remaining basically the same as with the 40ms windows. In this instance, the smaller
window size is too small for the program.

The effect of using shorter time windows for analysis is to reduce the importance of the
exact ordering of references. A similar phenomenon occurs when the programs are synchronized
explicitly. Both situations improve the correspondence of G with false sharing impact, but
generally not enough to make it useful as a predictor. The conjecture we make from these data

90 CHAPTER 6. ANALYSIS OF SPLASH PROGRAM EXECUTION

and interpretations is that in order to accurately predict the false sharing impact of a page, we
need to know the ordering of the accesses to the page from each processor.

To further examine these effects, we run an experiment which identifies the most important
factors (of those defined in Section 2.2) that contribute to false sharing impact. The experiment
and its results are the subject of the next chapter.

Chapter 7

Evaluation of factors

In the previous chapter, we determined that summary information about memory references
appears insufficient for accurately predicting false sharing impact. The question remains unan-
swered as to which particular factor is the most important in predicting false sharing impact. To
answer this question, we perform experiments which vary and control the various workload fac-
tors identified in Section 2.2, as well as certain architectural factors which contribute to the cost
of sharing data across processors. The primary ones we are concerned with are the coherency
protocol (update or invalidate) and page size (64 bytes, a typical cache line size, or 8192 bytes,
a typical page size). The effect of other factors such as the time it takes to transfer data from
one processor memory to another is left as future work.

7.1 Experiment design

7.1.1 Background

Not all of the factors defined in Section 2.2 are evaluated. We only consider factors that affect
the amount of data transmitted across the interconnection network. The number of reads and
writes to a page are not varied because these can be changed arbitrarily to require more data
transfer (when more work is done). The value of the update timeout threshold is held constant,
since it is not a factor for the invalidate architectures. This leaves us with the architectural
and workload parameters and the values at which they will be evaluated listed in Table 7.1.
The length of a run is kept constant, as is the length of the thrash cycle. The thrashing cycle
length is equal to the number of processors in the experiment minus one. Note that G is used in
this experiment merely as a quantification of the sharing participation — any proposed measure
would agree that one case exhibits more sharing than the other.

Parameter Values
number of processors 4, 16
page size (bytes) 64, 8192
coherency model update, invalidate
interleaving order run, thrash
sharing participation (G) 0.5 and 0.75 (4 processors)

0.5 and 0.9375 (16 processors)

Table 7.1: Workload factors and the levels at which they are evaluated

91

92 CHAPTER 7. EVALUATION OF FACTORS

G Pattern
0.5 2 2
0.75 1 1 1 1

Table 7.2: Memory reference patterns for four processors.

word A word B word C word D
P0 P2
P1 P3

Table 7.3: Processor lists for reference pattern (2 2)

The experiment design and evaluation is based on techniques described by Jain in [15]. We
use a full-factorial design where every factor is evaluated at every level of each of the other
factors. The response variable is the cost of copying data attributable to false sharing between
processors. In these experiments, we only evaluate the coherency costs associated with references
to one page by all processors. Data from the experiments is analyzed using statistical techniques
to generate a model to describe the relationship between the factors and the response variable.

7.1.2 Details of the experiment

All of the factors have categorical values — they take on one of two possible values. The value
for the sharing participation are computed from the sharing patterns used for the experiment.
These patterns are selected from those used in the synth-FS program described in Section 4.1.1.
By using these patterns, we can vary the sharing participation while keeping all other factors
identical.

We map the distinct sharing patterns to values of G. Using G allows us to capture our
intuition that the reference pattern (1 1 2) has more sharing than the pattern (1 1 1 1).

In Table 7.2 are listed the reference patterns that generate the corresponding sharing partici-
pation (G) values for the four processor experiments. Computation of G here assumes each word
in the page is referenced the same number of times. The numbers in the pattern indicate how
many processors reference a given word in the page. Similar patterns are used for the sixteen
processor experiments.

The selection of the value of the update threshold count is fixed at ten. This value was chosen
because of the relatively low number of total references made during the experiments. Changing
the value to five does not significantly alter the data. Turning off the update expiration does
impact the data, but not the conclusions drawn from them.

The execution of the test program is as follows. First, the memory reference pattern is
converted into a list of processors referencing each page. Each word is both read and then
written 50 times, simulating a read/modify/write operation. If the interleaving order is thrash,
each processor is allowed to make a single memory reference during each of the 50 cycles. If the
order is run, then each processor performs all 50 references without any other processor making
any references.

An example of the generated lists is shown in Table 7.3 for the pattern (2 2) for a four
processor test. The first word, A, is referenced by processors 0 and 1, and the second word,
B, is referenced by processors 2 and 3. The remaining words remain unreferenced. For the
thrashing situation, the reference trace would look like this (limited to three references per word
for brevity):

7.2. RESULTS 93

Factor Impact
Page Size Coherency Order G

64 invalidate thrash 0.5 0
64 invalidate thrash 0.75 12544
64 invalidate run 0.5 0
64 invalidate run 0.75 0
64 update thrash 0.5 1584
64 update thrash 0.75 2376
64 update run 0.5 40
64 update run 0.75 120

8192 invalidate thrash 0.5 0
8192 invalidate thrash 0.75 160563
8192 invalidate run 0.5 0
8192 invalidate run 0.75 0
8192 update thrash 0.5 1584
8192 update thrash 0.75 2376
8192 update run 0.5 40
8192 update run 0.75 120

Table 7.4: List of all experiments for four processors

A0, A1, B2, B3, A0, A1, B2, B3, A0, A1, B2, B3

where A0 means word A was read and written by processor 0. The length of the thrashing cycle
is 3, which is one less than the number of processors (as per the definition in Section 2.2). For
the run interleaving, the trace would look like this:

A0, A0, A0, A1, A1, A1, B2, B2, B2, B3, B3, B3

The run length here is two, one less than the number of references per word.
This experiment is repeated with four processors and sixteen processors as separate cases.

7.2 Results

Because the response variable values differ by several orders of magnitude, we need to use a
logarithmic transformation of these values for analysis. Additionally, physical considerations of
the system in the way that the coherency model and page size are related to the data transfer
impact lead us to use a model that is multiplicative, not additive. All of the analysis following
uses log-transformed values of the impact, and the final model is generated by taking the anti-log
of the additive model generated by the linear regression.

7.2.1 Four processor evaluation

The list of all experiments conducted using a four processor simulation is in Table 7.4. There
are 16 experiments listed, which consist of all possible combinations of the factors. The result
of running each experiment is labeled as Impact. It is this value that we wish to predict based
on the other factors.

94 CHAPTER 7. EVALUATION OF FACTORS

Normal Quantiles

R
es

id
ua

lQ
ua

nt
ile

s

21.510.50-0.5-1-1.5-2

6

5

4

3

2

1

0

-1

-2

-3

-4

-5

Figure 7.1: Quantile-Quantile plot of residuals for four processor experiments

Regression fit of all data

We use a linear regression fit of the logarithm of the impact against the factors listed in Table 7.1
and take the anti-log of the resulting equation to get our model. The computed model is

Impact = 0.85274PageSize × 0.198493CoherencyModel ×
8.74078RefOrder × 0.217621G × 73.3601 (7.1)

We interpret Equation 7.1 as follows: The most significant factor contributing to Impact is the
reference order (since this factor has the highest value for its effect) and the other factors are
minor contributors to the impact. One test for the goodness of the fit of the model is indicated by
the coefficient of determination (R2) from the linear regression, which in this case is 0.6430. This
means that the regression model only explained roughly 64% of the variation in the logarithm of
the response variable. Since this is slightly low, we need to investigate further on the goodness
of fit.

Visual tests for goodness of fit

To further evaluate the accuracy of the regression, we use visual tests to ensure the residuals
(errors) are normally distributed and that they are homogeneously distributed with respect to the
predicted values. The regression techniques assume that the residuals are normally distributed.
If they are not, then the model is not valid.

To test the normality assumption of the residuals, we compare the quantiles of the residuals
with quantiles of the unit normal distribution. The quantiles are computed by taking the inverse
of the cumulative distribution function (CDF) of the expected distribution (in our case the unit-
normal distribution). The residuals are computed by evaluating the formula in the regression
equation and subtracting the result from the actual value. Precise instructions and formulas are
found in [15, Section 12.10]. The resulting quantile-quantile plot will be linear if the residuals
are normally distributed. To aid this analysis, we plot a line that indicates the linear fit of the

7.2. RESULTS 95

Predicted impact

R
es

id
ua

l

1086420-2

6

5

4

3

2

1

0

-1

-2

-3

-4

Figure 7.2: Residual vs. Predicted value for four processor experiments

points. The quantile-quantile plot for this regression, in Figure 7.1, shows only a slight deviation
from the line. We consider this to indicate a normal distribution of errors, so the assumption of
the model holds.

A lack of homogeneity in the residuals compared with the predicted values indicates that the
residuals are still functions of the factors. The plot of the residuals against the predicted values
in Figure 7.2 shows reasonably well scattered residuals, though there appears to be some slight
pairing of the points. This could indicate that there are some interactions among the factors in
the regression.

Testing for factor interaction

We present the full regression model for the experiment in a tabular form. This computation
accounts for all interactions among the four factors. The effects for this regression are presented
in Table 7.5. The factor A corresponds to the factor page size, factor B to coherency model,
C to reference order, and D to G. The factor BC corresponds to the factor describing the
interaction between coherency model and reference order, and so forth. The regression equation
is a product of these factors multiplied by the indicated factors. (The regression equation 7.1
could be summarized by a similar table consisting of only the first five lines. The error in
that regression is explained by the additional factor interactions in this table.) It is quite clear
from this analysis that reference order is the most important single factor in the model. The
interaction of coherency model and reference order is significant, as is the interaction between
page size and G. The remaining factors are less important.

Since the interaction between the coherency model and the reference order is the more signif-
icant than the other interactions, we analyze the data by holding the coherency model constant.
That is, we create two data sets, one with only invalidate coherency experiments and one with
only update coherency experiments. This also reduces the number of factors in the regression
by one.

96 CHAPTER 7. EVALUATION OF FACTORS

Factor Effect
I 73.3601
A 0.852713
B 0.198406
C 8.74113
D 0.217643
AB 0.852713
AC 0.852713
AD 1.17273
BC 1.66512
BD 0.315679
CD 0.285264
ABC 0.852713
ABD 1.17273
ACD 1.17273
BCD 0.240848
ABCD 1.17273

Table 7.5: Regression results for four processor experiments with all interactions.

The model describing only the invalidate-coherency experiments is

Impact = 0.727094PageSize × 14.556RefOrder × 0.0687004G × 14.5549 (7.2)

which indicates that reference order is by far the most important factor contributing to the
impact. The regression explains 68% of the variation of the data. Interactions among the
remaining factors are insignificant. The visual tests (not shown here) confirm the residuals are
normally distributed, but have short tails.

The model describing only the update-coherency experiments is

Impact = 1.0PageSize × 5.2488RefOrder × 0.689423G × 369.747 (7.3)

again indicating that reference order is the most significant factor. This regression explains 99%
of the variation of the data, which is excellent.

Based on the above tests and models, we can conclude that the most significant factor
contributing to false sharing impact is indeed the global reference interleaving order.

7.2.2 Sixteen processor evaluation
The list of all experiments conducted using a sixteen processor simulation is in Table 7.6. As
with the four processor case, we proceed by performing a linear regression on the log-transformed
response variable Impact, and take the anti-log of the resulting equation to get the model.

Regression fit of all data

The model for the sixteen processor experiments is given by the equation

Impact = 0.85274PageSize × 0.10208CoherencyModel ×
16.0868RefOrder × 0.14808G × 201.595 (7.4)

Once again, we note that reference order is the most significant factor in this model. The R2 test
for this regression indicates that nearly 73% of the variation is explained by this model. This is
good, but we still need to perform the visual tests.

7.3. DISCUSSION 97

Factor Impact
Page Size Coherency Order G

64 invalidate thrash 0.5 0
64 invalidate thrash 0.9375 50176
64 invalidate run 0.5 0
64 invalidate run 0.9375 0
64 update thrash 0.5 19404
64 update thrash 0.9375 31780
64 update run 0.5 40
64 update run 0.9375 600

8192 invalidate thrash 0.5 0
8192 invalidate thrash 0.9375 642252
8192 invalidate run 0.5 0
8192 invalidate run 0.9375 0
8192 update thrash 0.5 19404
8192 update thrash 0.9375 31780
8192 update run 0.5 40
8192 update run 0.9375 600

Table 7.6: List of all experiments for sixteen processors

Visual tests for goodness of fit

We perform the same visual tests as for the four processor experiments in Section 7.2.1. The
quantile-quantile plot (Figure 7.3) shows good linearity. The residual vs. predicted value plot of
Figure 7.4 also shows the same kind of scattering as the four processor case did.

Testing for factor interaction

As we did in the four processor case (Section 7.2.1), we compute the full model with all interac-
tions among the four factors. The result is presented in Table 7.7. The only interactions are an
order of magnitude smaller than the most significant primary factor, so they do not affect the
model much.

7.3 Discussion
Performing the experiments detailed in this chapter has proved very insightful in pinpointing the
major cause of false sharing impact. The statistical analysis done on these experimental data
points conclusively to the reference interleaving order being the most significant contributor to
the false sharing impact. By examining the raw data, it is clear that changing the reference
interleaving order the impact can be changed dramatically—almost arbitrarily. Other reference
order patterns can be made to generate even higher impact than the thrash patterns did. We
did not use them here because they do not keep the other factors constant, which is important
for our analysis.

The need for precise reference interleaving order is confirmed by the experiments of Chapter 5
and Chapter 6. The synthetic programs showed little correlation between impact and G in those
tests where interleaving was not controlled. None of the analyses of the SPLASH programs
showed promising results either.

In real programs the order of references cannot be changed as radically as we did here.
However, the point of this exercise was to show that if the reference interleaving order is not

98 CHAPTER 7. EVALUATION OF FACTORS

Normal Quantiles

R
es

id
ua

lQ
ua

nt
ile

s

21.510.50-0.5-1-1.5-2

6

4

2

0

-2

-4

-6

Figure 7.3: Quantile-Quantile plot of residuals for sixteen processor experiments

Predicted impact

R
es

id
ua

l

14121086420-2

6

5

4

3

2

1

0

-1

-2

-3

-4

-5

Figure 7.4: Residual vs. Predicted value for sixteen processor experiments

7.3. DISCUSSION 99

Factor Effect
I 201.595
A 0.852709
B 0.102104
C 16.0904
D 0.148149
AB 0.852709
AC 0.852709
AD 1.17273
BC 1.27926
BD 0.327928
CD 0.289879
ABC 0.852709
ABD 1.17273
ACD 1.17273
BCD 0.167594
ABCD 1.17273

Table 7.7: Regression results for sixteen processor experiments with all interactions

known, the impact cannot be predicted: If we do not know the ordering, we do not know if it
was beneficial or harmful in terms of its effect on false sharing impact.

The conclusion from these experiments is that knowledge of the precise interleaving order
of references is vital to predict the false sharing impact for a page. Any metric that proposes
to predict false sharing impact must take into account the reference interleaving order. The
primary consequence of this is that accurate computation of false sharing impact requires an
enormous amount of data to be collected and stored. Furthermore, the data that needs to be
collected cannot easily be captured without perturbing the execution of the program.1 If the
program’s execution is altered, the conclusions drawn from the data are no longer applicable.
Even if we were able to capture all the necessary data, storing it would be a problem. A long-
running parallel program can easily generate hundreds of millions of memory references, each of
which needs to be recorded.

1We cleverly avoided this problem by using a simulation.

100 CHAPTER 7. EVALUATION OF FACTORS

Chapter 8

Conclusions and future research

Our original motivation for this work was to detect the causes of excess data communication
between processors in a shared memory machine. We demonstrated the existence of excessive
data transfer by performing an experiment which compared the data traffic of programs run-
ning on an ideal memory architecture to more realistic architectures with large page sizes. We
found that a significant portion of the data traffic between processors was unnecessary for the
computation and could be attributed to poor data packaging, i.e., false sharing.

We discussed the difficulties of formally defining false sharing in a manner that has the
following desired characteristics: (a) captures intuition, (b) is architecturally independent, (c)
predicts performance impacts for various architectures, and (d) has a practical application in
solving the false sharing problem. Our formulation has the first two of these desired traits by
design. It is based on our intuition of the varying degrees of false sharing; we are not limited to
the de facto false sharing discussed in previous work. The latter two characteristics are discussed
in terms of our formulation in the next section.

8.1 Review

The different experiments with the synthetic workload programs demonstrate several points:
(1) The details of the coherency protocol implementation interact with interleaving patterns
so that the architecturally dependent false sharing cost measures yield values that may be too
specific to a particular execution of an asynchronous program. (2) Because of the nature of the
update protocol scheme being used in this study which masked some interleaving effects, the good
correlations between false sharing byte traffic and G found in these cases are fairly convincing
arguments that G captures something of the intuition of false sharing. (3) The loss of ordering
information in the G false sharing measure, especially when calculated over the entire execution,
can be significant. However, the pessimistic bias (pinpointing false sharing problems that don’t
necessarily translate into performance problems because of favorable reference orderings) make
the measures useful as devices to explain observable poor performance.

Further investigations using real applications confirm the conclusions above. These addi-
tional experiments also reveal that the measures are most accurate at predicting false sharing
impact when the pages are actively used by multiple processors during the entire interval under
evaluation. By limiting the evaluation window to single phases of the applications, we are able
to slightly increase the accuracy of the predictions. Limiting the window size also reduces the
importance of the memory reference interleaving order, particularly when the program has short,
regular phases.

The experiments conducted in Chapter 7 serve both to confirm and explain the previous
experiments. The evidence gathered from all the experiments leads us to conclude that memory

101

102 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH

reference interleaving order is a significant factor in the performance impact of false sharing.
Looking back at the shorter interval analyses, we see a shift of the pages with higher impact
to the higher predicted values. We can interpret this shift as being due to the elimination of
the appearance of sharing when in fact the pages were used at distinct times in the execution.
Shorter window durations afford us only limited relief from the impact of reference order.

We conclude that any proposed predictor that is based on summary information cannot
accurately predict the impact. It can be at best provide an upper bound on the excess data
traffic. On the other hand, measures that take into account precise interleavings are not likely
to be practical in performance debugging tools. There is a delicate balance here that needs to
be investigated.

8.2 Speculations on future work

There are several directions in which to proceed based on the results of this work. Foremost
among these is to develop a measure that will accurately predict the false sharing impact of a
page. This measure will need to account for the fine-grained information shown necessary for
such a prediction. The need to track the detailed information of the memory references makes
it unlikely that such a measure can be implemented as an on-line algorithm — the data storage
requirements are just too great.

Even with an accurate predictive measure, the ability to detect false sharing and isolate
the pages most affected by it does not solve the associated performance problems. In order to
reduce the impact of false sharing in an application, we must first correlate the areas of memory
causing the problems to the data structures in the program, then determine ways of eliminating or
reducing the impact. A performance debugging tool needs to be able to provide the detection and
a mechanism to identify the relevant data structures. Further, such a tool needs to be able to send
hints to the compiler. As in any program debugging, performance debugging involves alternating
cycles of execution and recompilation. Information learned from one execution should be able
to guide the compiler to improve the program layout and performance on the next compilation
in an iterative fashion. This type of technique has been used for uniprocessor performance
enhancement. In the uniprocessor case, however, all of the information is automatically gathered
and interpreted.

Techniques for reducing the effects of false sharing have been discussed in the literature. In
general, knowledge of the suspected data structures is needed. Torrellas et al., in [26], discuss
methods of reducing false sharing related cache misses. Their primary methods are to rearrange
data such that variables that exhibit false sharing are placed on different cache blocks and to put
variables protected by a lock on the same block as the lock. Eggers and Jeremiassen [10] also
propose techniques to eliminate false sharing in caches. Their transformations involve allocating
data objects together that have similar sharing properties and the use of indirection. These
methods address solutions when classic false sharing is involved. It is not entirely clear how to
handle situations where data structures located on the same page are not shared by the same
subsets of processors, such as those discussed in Section 2.1. Developing such techniques is a
promising direction for future work.

Automating the program transformations is not yet possible — human decision making is
still required. Using the techniques presented in this thesis and in some of the other literature,
the best we can do currently is identify which data structures are causing problems; we cannot
automatically determine which data structures have similar sharing patterns and should be co-
located. Further, poor data structures cannot be redesigned automatically. In some situations,
it would be more beneficial to redesign the algorithm than to rearrange the layout of the data.
As an example of improper data structure choice, consider an array allocated in column-major
order but accessed in a row-major order by different processors. The individual elements of the
array would exhibit false sharing and would be candidates for reorganization.

8.2. SPECULATIONS ON FUTURE WORK 103

To summarize, our future goals are to (1) refine our techniques of detecting false sharing
at the page level, (2) develop tools to identify the data structures located on such pages, (3)
generate a set of guidelines and heuristics to aid the programmer in refining the application to
reduce false sharing impact, and (4) investigate compiler feedback technology to assist in the
performance debugging process.

104 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH

Bibliography

[1] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Munin: Distributed Shared
Memory Based on Type-Specific Memory Coherence. Technical Report COMP TR89-98,
Department of Computer Science, Rice University, P.O. Box 1892, Houston, Texas 77251-
1892, November 1989.

[2] W. Bolosky, M. Scott, and R. Fitzgerald. Simple But Effective Techniques for NUMA
Memory Management. In Proceedings of the Twelfth ACM Symposium on Operating Systems
Principles, pages 19–31, December 1989.

[3] William J. Bolosky and Michael L. Scott. False Sharing and its Effect on Shared Memory
Performance. In Proceedings of the Fourth Symposium on Experiences with Distributed and
Multiprocessor Systems, September 1993.

[4] William J. Bolosky, Michael L. Scott, Robert P. Fitzgerald, Robert J. Fowler, and Alan L.
Cox. NUMA Policies and Their Relation to Memory Architecture. In Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems,
pages 212–221, April 1991.

[5] James Boyle, Ralph Butler, Terrence Disz, Barnett Glickfeld, Ewing Lusk, Ross Overbeek,
James Patterson, and Rick Stevens. Portable Programs for Parallel Processors. Holt, Rine-
hart and Winston, Inc., New York, NY, 1987.

[6] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation and Perfor-
mance of Munin. In Proceedings of the Thirteenth ACM Symposium on Operating Systems
Principles, pages 152–164, May 1991.

[7] Yung-Syau Chen and Michel Dubois. Cache Protocols with Partial Block Invalidations. In
Proceedings of the International Parallel Processing Symposium, pages 16–23, April 1993.

[8] Helen Davis, Stephen R. Goldschmidt, and John Hennessy. Multiprocessor Simulation and
Tracing Using Tango. In Proceedings of the 1991 International Conference on Parallel
Processing, Volume II, pages 99–107, 1991.

[9] Czarek Dubnicki and Thomas J. LeBlanc. Adjustable Block Size Coherent Caches. In
Proceedings of the 19th Annual International Symposium on Computer Architecture, 1992.

[10] Susan J. Eggers and Tor E. Jeremiassen. Eliminating False Sharing. Technical Report 90-12-
01, Department of Computer Science and Engineering, University of Washington, Seattle,
WA 98195, 1990.

[11] Susan J. Eggers and Randy H. Katz. A Characterization of Sharing in Parallel Programs
and its Applicability to Coherency Protocol Evaluation. In Proceedings of the 15th Annual
International Symposium on Computer Architecture, pages 373–383, May 1988.

105

106 BIBLIOGRAPHY

[12] Anoop Gupta and Wolf-Dietrich Weber. Cache Invalidation Patterns in Shared-Memory
Multiprocessors. IEEE Transactions on Computers, 41(7):794–810, July 1992.

[13] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers, Inc., San Mateo, California, 1990.

[14] Mark A. Holliday and Carla S. Ellis. Accuracy of Memory Reference Traces of Parallel
Computations in Trace-Driven Simulation. Technical Report number unknown, Department
of Computer Science, Duke University, Durham, NC 27706, May 1990.

[15] Raj Jain. The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling. John Wiley & Sons, Inc., 1991.

[16] Richard P. LaRowe and Carla S. Ellis. Experimental Comparison of Memory Management
Policies for NUMA Multiprocessors. ACM Transactions on Computer Systems, 9(4):319–
363, November 1991.

[17] Richard P. LaRowe Jr. Personal Communication.

[18] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman.
The Design and Implementation of the 4.3BSD UNIX Operating System. Addison-Wesley,
1989.

[19] Stuart E. Madnick and John J. Donovan. Operating Systems. McGraw Hill, 1974.

[20] David Mosberger. Memory Consistency Models. ACM SIGOPS Operating Systems Review,
27(1):18–26, January 1993. See also [21] and [22].

[21] David Mosberger. Memory Consistency Models. Technical Report 93/11, Department of
Computer Science, The University of Arizona, Tucson, AZ, 85721, 1993. Updated version
of [20].

[22] Gil Neiger. Letter to the Editor. ACM SIGOPS Operating Systems Review, 27(3):1–3, July
1993.

[23] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford Parallel
Applications for Shared Memory. Technical report, Computer Systems Laboratory, Stanford
University, Stanford, CA 94305, August 1991.

[24] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford Parallel
Applications for Shared Memory. Computer Architecture News, 20(1):5–44, March 1992.

[25] Josep Torrellas, Monica S. Lam, and John L. Hennessy. Measurement, Analysis, and Im-
provement of the Cache Behavior of Shared Data in Cache Coherent Multiprocessors. Tech-
nical Report CSL-TR-90-412, Computer Systems Laboratory, Stanford University, Stanford,
CA 94305, February 1990.

[26] Josep Torrellas, Monica S. Lam, and John L. Hennessy. Shared Data Placement Optimiza-
tions to Reduce Multiprocessor Cache Miss Rates. In Proceedings of the 1990 International
Conference on Parallel Processing, Volume II, pages 266–270, August 1990.

[27] Andrew W. Wilson Jr and Richard P. LaRowe Jr. Hiding Shared Memory Reference Latency
on the Galactica Net Distributed Shared Memory Architecture. Journal of Parallel and
Distributed Computing, 15(4):351–367, August 1992.

Biography

I was born in a small town in India in 1966. At the ripe old age of three, I moved with my
family to New Jersey. After a year there, and another four in Indiana, we finally settled down in
Rockville, Maryland, in 1975. Over the next nine years, I survived grade school, middle school,
and high school. Then came college. I survived that, too, amazingly enough. After my four
years at the University of Maryland at College Park (earning a BS degree in Computer Science),
I moved to Durham to attend the Graduate School of Duke University. That was in 1988. In
1992, Duke awarded me the MS degree in Computer Science. It is now 1994, and I’m finally
escaping the grip of the academic lifestyle.

While a graduate student at Duke, I published a few papers on topics totally unrelated to my
dissertation. One was on using the Mathematica program to call external numerical libraries,
and another was on the Duke Internet Programming Contest. The contest started out as a
small fun experiment, and has grown to be nearly overwhelming in size. Hopefully, someone will
continue running it when I’m gone.

107

